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Abstract

The mitochondrial RNA-binding proteins (MRP) 1 and 2 play a regulatory role in RNA editing and putative role(s) in RNA pro-
cessing in Trypanosoma brucei. Here, we report the purification of a high molecular weight protein complex consisting solely of the
MRP1 and MRP2 proteins from the mitochondrion of T. brucei. The MRP1/MRP2 complex natively purified from T. brucei and
the one reconstituted in Escherichia coli in vivo bind guide (g) RNAs and pre-mRNAs with dissociation constants in the nanomolar
range, and efficiently promote annealing of pre-mRNAs with their cognate gRNAs. In addition, the MRP1/MRP2 complex stimulates
annealing between two non-cognate RNA molecules suggesting that along with the cognate duplexes, spuriously mismatched RNA
hybrids may be formed at some rate in vivo. A mechanism of catalysed annealing of gRNA/pre-mRNA by the MRP1/MRP2 complex
is proposed.
� 2008 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
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R1. Introduction

Trypanosomatids are causative agents of several devas-
tating tropical diseases such as African sleeping sickness,
Chagas’ disease and leishmaniasis. Available drugs are
obsolete, difficult to administer and have many undesirable
side-effects. Therefore, there is an ongoing effort to design
new drugs against these parasites. From the pharmacolog-
ical perspective, unique metabolic processes and protein
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complexes with a singular structure, composition and
essential function are of particular interest. One such
remarkable process is kinetoplast (k) RNA editing, an
essential mechanism by which certain mitochondrial pre-
mRNAs are post-transcriptionally modified via exclusive
insertion and deletion of uridylate residues to otherwise
encrypted transcripts. RNA editing is a requirement for
translation of these mRNAs, as it creates start and stop
codons, eliminates frameshifts and in some cases creates
entire open reading frames (ORFs) (reviewed in references
Lukeš et al., 2005; Simpson et al., 2004; Stuart et al., 2005).
The RNA editing process appears to take place by a series
of cut and paste steps and is carried out by a multi-protein
complex termed the editosome (Panigrahi et al., 2003a,
2003b) or L-complex (Aphasizhev et al., 2003a,b). Genetic
information for kRNA editing is contained in short, mitoc-
hondrially-encoded transcripts, called guide (g) RNAs.
y Elsevier Ltd. All rights reserved.
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Each gRNA transfers the genetic information for specific
uridine insertions and/or deletions at multiple sites in the
pre-mRNA through base pairing interactions (Blum
et al., 1990; Sturm and Simpson, 1990; Hermann et al.,
1997).

Evidence for the existence of gRNA-binding proteins
in kinetoplastid mitochondria has been presented by sev-
eral laboratories (Köller et al., 1994; Bringaud et al.,
1995; Leegwater et al., 1995; Hayman and Read, 1999;
Madison-Antenucci and Hajduk 2001). One of these pro-
teins, identified by virtue of its specific cross-linking to the
gRNA molecules, is the Trypanosoma brucei mitochon-
drial RNA-binding protein (MRP) 1, originally called
gBP21 (Köller et al., 1997). It has been shown that this
protein has a high affinity for gRNAs (Köller et al.,
1997) and promotes the annealing of gRNA and its cog-
nate pre-mRNA in vitro (Lambert et al., 1999; Müller
et al., 2001). Based on these findings, MRP1 was pro-
posed to play an active role in the first step of kRNA
editing, gRNA/pre-mRNA hybridization (Müller et al.,
2001). The involvement of MRP1 in RNA editing was
further supported by its association with the editosomal
complex, albeit RNA mediated and perhaps transient
(Allen et al., 1998; Aphasizhev et al., 2003a,b).

Proteins orthologous to MRP1 were identified in Leish-

mania tarentolae (Lt28) and Crithidia fasciculata (gBP29)
(Blom et al., 2001; Aphasizhev et al., 2003a,b). Impor-
tantly, a second gRNA-binding protein, gBP27, was found
in C. fasciculata that co-purified and co-immunoprecipi-
tated with gBP29 (Blom et al., 2001). A similarly tight asso-
ciation was subsequently observed for the homologous
proteins in L. tarentolae, in which Ltp28 and Ltp26, the
gBP27 ortholog, form a 100-kDa heterotetrameric complex
(Aphasizhev et al., 2003a,b). The complex has been shown
to bind RNA and promote annealing of gRNA to its cog-
nate pre-mRNA (Aphasizhev et al., 2003a,b), overlapping
in function with MRP1 from T. brucei.

This finding indicated a possibility that MRP1 in T. bru-
cei might be involved in a multi-protein complex in analogy
to L. tarentolae (Aphasizhev et al., 2003a,b) and C. fascic-

ulata (Blom et al., 2001), which was later corroborated by
identification of the orthologue of Ltp26 and gBP27,
named MRP2 (Vondrušková et al., 2005). Silencing of
MRP1 and MRP2 by RNA interference revealed a mutual
dependence for stability, which further supported partici-
pation of both proteins in the formation of a single
multi-protein complex (Vondrušková et al., 2005). In cells
with down-regulated MRP1/MRP2 complex, the assembly
and functionality of respiratory complexes were affected
due to the disruption of RNA editing and/or stability of
the transcripts encoding the mitochondrial-encoded sub-
units (Zı́ková et al., 2006). However, the exact function
of the MRP1/MRP2 complex in kRNA editing and/or
RNA stability has remained largely obscure. Recently,
the crystal structure of the T. brucei MRP1/MRP2 complex
reconstituted in E. coli with and without gRNA revealed a
unique mechanism of RNA-binding to the complex in a
Please cite this article in press as: Zı́ková, A. et al., Structure and f
Parasitol. (2008), doi:10.1016/j.ijpara.2007.12.009
E
D

P
R

O
O

F

sequence non-specific manner (Schumacher et al., 2006).
In the present study we have used natively isolated and
recombinant T. brucei MRP1/MRP2 complexes to charac-
terise their interactions with several mitochondrial gRNA
and pre-mRNA molecules and to examine its RNA anneal-
ing activity towards various RNA species. These studies
indicate that the T. brucei MRP1/MRP2 complex binds
gRNAs and pre-mRNAs with almost the same affinity
and can promote RNA annealing between gRNA/pre-
mRNA pairs.

2. Materials and methods

2.1. Trypanosome culture and transfection

The whole ORF including the mitochondrial signal
sequence of MRP1 and MRP2 was amplified by PCR
and subcloned into the pLEW79-tandem affinity purifica-
tion (TAP) vector (Panigrahi et al., 2003b). The T. brucei

cell line 29–13 co-expressing the Tet repressor and T7
RNA polymerase was transfected with NotI-linearised
pLew79-MRP1-TAP and pLew79-MRP2-TAP. Phleomy-
cin-resistant clones were selected and checked for tightly
tetracycline-regulated expression. Expression of MRP1-
TAP or MRP2-TAP in the recombinant cell lines was
induced for 48 h with 1 lg/ml of tetracycline.

2.2. Isolation of native MRP1/MRP2 complex from

T. brucei

The TAP protocol was adapted from the published
method (Puig et al., 2001). The cell pellet from
2 � 1010 cells or the mitochondria-enriched fraction iso-
lated by hypotonic lysis from 2 � 1011 cells was lysed
on ice for 20 min in 20 ml of IPP buffer (10 mM Tris–
HCl, pH 8.0; 150 mM NaCl; 0.1% NP40) with 1% Triton
X-100. Two tablets of complete proteinase inhibitors
(Roche) were added directly to the extract. After centri-
fugation at 9800g for 30 min, the supernatant was incu-
bated with 200 ll of IgG-Sepharose FF (AP Biotech)
for 2 h. After the wash, beads were incubated with tabac-
co etch virus (TEV) protease in the TEVCB buffer
(10 mM Tris–HCl pH 8.0; 150 mM NaCl; 0.1% NP40;
0.5 mM EDTA; 1 mM DTT) for 2 h at 16 �C. The
TEV eluate was purified over calmodulin resin (Strata-
gene) in the CBB buffer (10 mM Tris–HCl, pH 8.0;
150 mM NaCl; 0.1% NP40; 10 mM b-mercaptoethanol
(ME); 1 mM Mg acetate; 1 mM imidazole; 2 mM CaCl2)
or loaded onto 11 ml 10–30% glycerol gradient and frac-
tionated for 20 h at 4 �C and 168,000g in a SW-40 rotor.
Fractions of 750 ll were collected from the top of the
gradient and selected fractions were pooled and purified
over the calmodulin resin in the CBB buffer. MRP-
tagged complexes were eluted with 4 � 250 ll of the
CEB buffer (10 mM Tris–HCl, pH 8.0; 150 mM NaCl;
0.1% NP40; 10 mM ME; 1 mM Mg acetate; 1 mM imid-
azole; 2 mM EGTA).
unction of the native and recombinant mitochondrial ..., Int. J.
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2.3. SDS–PAGE, Western blotting and blue native

electrophoresis

Cell lysates and protein samples were fractionated by
SDS–PAGE, blotted, probed with affinity purified poly-
clonal anti-MRP1 or anti-MRP2 antibodies and developed
using the ECL system (Amersham) (Vondrušková et al.,
2005). The monoclonal mouse antibodies against the edit-
osomal proteins KREPA1, KREPA2, KREPA3, KREL2
(1:25) and the polyclonal rabbit antiserum against KRET1
(1:1000) (a kind gift from L. Simpson, UCLA) were used at
dilutions shown in parenthesis. For blue native electropho-
resis, 100 ng of the MRP1/MRP2 complex isolated from
T. brucei or overexpressed in E. coli (see below) was incu-
bated in buffer A (1% dodecyl maltoside; 750 mM amino-
caproic acid; 0.5% CBB-G; 50 mM Bis–Tris; 0.5 mM
EDTA, pH 7.0) for 15 min on ice and loaded onto 4–
16% blue native gel (BN) (500 mM aminocaproic acid;
50 mM Bis–Tris, pH 7.0). The gel was run for 3 h at
250 V and 5 mA and silver stained (Invitrogen).

2.4. Electron microscopy and image analysis

The specimens were placed on glow-discharged carbon-
coated copper grids and negatively stained with 2% uranyl
acetate. Electron microscopy was performed with a Philips
TEM 420 electron microscope using 80 kV at 60,000�mag-
nification. Micrographs were digitised with a pixel size corre-
sponding to 0.51 nm at the specimen level. Image analysis
was carried out using the SPIDER software (Frank et al.,
1996). From 10 micrographs of the untreated MRP1/
MRP2 complex preparation (Fig. 3A), 830 top-view projec-
tions were selected for the analysis, and 720 top-view projec-
tions from 15 micrographs of the RNase-treated complex
(Fig. 3B), were selected. Next, these projections were rota-
tionally and translationally aligned and processed by multi-
variate statistical analysis followed by classification (Harauz
et al., 1988). For the final analysis, the best of the class mem-
bers were summed using a cross-correlation coefficient of the
alignment procedure as a quality parameter. The resolution
of the images was calculated by using the Fourier ring corre-
lation method (van Heel, 1987).

2.5. Mass spectrometry analysis

One hundred microlitres of elution 2 from the calmodu-
lin binding column was precipitated with 600 ll of acetone,
and the samples were further denatured with 8 M urea/
1 mM DTT, and treated overnight with 100 ng of trypsin.
The resulting peptides were purified using RPC-18 mag-
netic beads (Dynabeads). In parallel, 30 ll of the elution
2 was separated by SDS–PAGE and the protein bands
were visualised by Sypro Ruby Staining (Molecular
Probes). All visible protein bands were excised from the
gel and digested with trypsin in-gel as described elsewhere
(Panigrahi et al., 2001). Peptides were identified using a
Thermo Electron LCQ DECA XP Spectrometer or LTQ
Please cite this article in press as: Zı́ková, A. et al., Structure and f
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Linear Ion Trap Mass Spectrometer. The collision induced
dissociation (CID) spectra were compared with the T. bru-

cei protein database downloaded from GeneDB using Tur-
boSequest software, and protein matches were determined
using PeptideProphet and ProteinProphet (Keller et al.,
2002; Nesvizhskii et al., 2003).

2.6. RNA sequences

A6U5 – 50 GGA AAG GUU AGG GGG AGG AGA
GAA GAA AGG GAA AGU UGU GAU UUU UGG
AGU UAU AGA AUA CUU ACC UGG CAU C
30gA6[14]16DG – 50 GGA UAU ACU AUA ACU CCG
AUA ACG AAU CAG AUU UUG ACA GUG AUA
UGA UAA UUA UUU UUU UUU UUU UUU UU
3050CybUT – 50 GGU UAU AAA UUU UAU AUA
AAA GCG GAG AAA AAA GAA AGG GUC UUU
UAA UGU CAG GUU GUU UAU AUA GAA U
30gCyb-558 – 50 GGG AUU AAA AGA CAA UGU
GAA UUU CUA GGU GAU AAA GGG AAU AAU
UUU UUU UUU UUU UU 30.

2.7. Annealing and binding assays

All RNA molecules (A6U5, gA6[14], 50CybUT, gCyb-
558) were synthesised by in vitro transcription from a linear
DNA template using T7 RNA polymerase following stan-
dard procedures. The synthesised RNAs were radioactively
labelled using [c-32P] ATP and T4 polynucleotide kinase
and purified on an 8 M urea 15% (w/v) polyacrylamide
gel. The binding reaction contained 12.5 nM of one RNA
reactant with the protein concentration varying from 0 to
1 lM. The annealing reaction contained 12.5 nM of both
RNA reactants (pre-mRNA and gRNA), with the protein
concentration ranging from 0 to 1 lM. All reactions were
performed in a 20 ll-reaction containing 6 mM HEPES–
KOH, pH 7.5; 50 mM KCl; 2.1 mM MgCl2; 0.1 mM
EDTA and 0.5 mM DTT incubated for 30 min at 27 �C.
After the incubation, the binding reaction was mixed with
6� loading buffer (0.25% (w/v) bromophenol blue, 0.25%
(w/v) xylene cyanol FF, 40% (w/v) sucrose in H2O) and
immediately loaded onto a pre-cast 10% TBE gels (Bio-
Rad). The annealing reactions were stopped by the addi-
tion of 20 lg proteinase K, and further incubated for
15 min at 27 �C (Müller et al., 2001). Gels were run at
100 V for 2.5 h at 4 �C, fixed in 10% (v/v) isopropanol
and 7% (v/v) acetic acid, dried and exposed in Phosphoim-
ager cassettes. Band intensities were quantified using the
ImageQuant TL v2003.02 program, and the Prizm3
(GraphPad) software package was used for all nonlinear
regression curve fitting and statistical analyses.

2.8. Purification of the recombinant MRP1 and MRP2

proteins and the MRP1/MRP2 complex

The MRP1 and MRP2 proteins were overexpressed and
purified as described elsewhere (Vondrušková et al., 2005).
unction of the native and recombinant mitochondrial ..., Int. J.
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To obtain sufficient amounts of the MRP1/MRP2 com-
plex, the MRP1 gene fragment encoding residues 20–176
(lacking the N-terminal mito-targeting sequence and the
C-terminal region found to cause insolubility) and the
MRP2 gene fragment encoding residues 30–224 (lacking
the N-terminal mito-targeting sequence) were co-expressed
in the pET-Duet-1 co-expression vector in E. coli.
Although a significant fraction of the complex was found
in inclusion bodies, 2–5 mg of soluble, pure MRP1/
MRP2 complex was obtained per litre of bacterial culture.

3. Results

3.1. MRP1 and MRP2 are conserved in trypanosomatids

To date, MRP1 and MRP2 homologues have only been
identified in T. brucei, L. tarentolae and C. fasciculata

(Blom et al., 2001; Aphasizhev et al., 2003a,b; Von-
drušková et al., 2005). Using the T. brucei MRP1 and
MRP2 sequences, we searched the databases and found
additional homologues of both proteins in the genomes
of Leishmania infantum, Leishmania major, Trypanosoma

cruzi and Trypanosova vivax (Supplementary Fig. S1).
These alignments revealed a somewhat higher level of sim-
ilarity than estimated previously from the narrower data-
set. Whilst the N-terminal 28 (Trypanosoma spp.) to 52
amino acids (C. fasciculata) of MRP1 lack any conserva-
tion, most of the central part of the gene (�140 residues)
is highly conserved. The C-terminus is again highly vari-
able (Supplementary Fig. S1A). The conservation follows
a rather different pattern in MRP2, with three highly con-
served blocks 25–42 amino acids long, one occupying the
most C-terminal region, being separated by highly variable
regions (Supplementary Fig. S1B). With the exception of
marginal similarity with bacterial ribosomal protein L1,
the MRP proteins have no significant sequence similarity
with other known proteins.

3.2. Isolation of the MRP1/MRP2 complex from T. brucei
procyclics

To identify interaction partners of MRP1 and MRP2,
both proteins containing the mitochondrial targeting
sequence and the C-terminal TAP-tag have been expressed
in T. brucei procyclic cells under the control of a tetracy-
cline-inducible promoter. The TAP-tagged MRP2 complex
was purified from lysed 2 � 1010 cells, and clarified whole
cell lysate was incubated with IgG-Sepharose beads. The
MRP2 protein attached to a calmodulin binding peptide
(MRP2-CBP) was released by incubation with TEV prote-
ase and further purified via a calmodulin binding column.
The purification was checked by Western blot analysis
using a specific anti-MRP2 antibody (Fig. 1A). SyproRuby
staining of the elution 2 revealed three major gel bands
(Fig. 1Ba), all of which were analysed by LC-MS/MS, as
well as a protein mixture from the same elution. Data
obtained from the MS analysis revealed that the
Please cite this article in press as: Zı́ková, A. et al., Structure and f
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�30 kDa band is the tagged MRP2 protein and the
�20 kDa band contains both the MRP1 and MRP2 pro-
teins, which co-migrate after the mitochondrial signal
sequence is cleaved. This result suggests that the TAP-tag
attached to the MRP2 protein does not compromise its
capacity to be efficiently incorporated into the MRP1/
MRP2 complex. The 50 kDa band was identified as a-
and b-tubulin with 31 and 43 unique peptides, respectively.
Moreover, cytosolic ribosomal proteins, TEF-1 elongation
factor, hsp70, glycerol kinase, and a few other proteins
were also rarely present.

The TEV eluate was fractionated using a 10–30% glyc-
erol gradient and fractions were screened with the anti-
MRP2 and anti-MRP1 antibodies. Western blot analysis
revealed that both wild type MRP2 and MRP2-CBP pro-
teins co-sediment with wild type MRP1. Interestingly,
some dimers under non-reducing SDS–PAGE condition,
which are resistant to 10% SDS, were observed (Fig. 1C).
Glycerol gradient fractions 4 through 7 that contained
most of the MRP1 and MRP2 signal were pooled and
the MRP1/MRP2 complex was purified by a second affin-
ity step. A Sypro Ruby-stained SDS PAGE gel, onto which
the eluate of the second purification step has been loaded,
revealed only two bands (Fig. 1Bb), which were subse-
quently subjected to LC-MS/MS analysis and identified
as MRP1 and MRP2 with 15 and 24 unique peptides,
respectively. Although still present, tubulin, cytosolic ribo-
somal protein and a few other proteins were identified only
with a few peptides as apparent contaminants of the TAP
purification. One of these putative contaminants, a
42 kDa protein of unknown function (Tb927.4.1300), was
tagged with an (HA)3 tag and expressed in T. brucei procy-
clics. Using a monoclonal antibody against this tag,
Tb927.4.1300 was immunolocalised to the cytoplasm, con-
firming its spurious association with the MRP1/MRP2
complex (data not shown).

To obtain additional evidence about the composition of
the MRP1/MRP2 complex, the TAP-tagged MRP2 was
further purified from a clarified mitochondria-enriched
fraction isolated by hypotonic lysis from 2 � 1011 cells. A
glycerol gradient step was also included and sedimentation
of the MRP1/MRP2 complex was similar as shown in
Fig. 1C. Sypro Ruby-stained SDS PAGE gel revealed three
major bands, which were subsequently subjected to LC-
MS/MS analysis. In all analysed samples both MRP1
and MRP2 were equally frequent (35 and 34 unique pep-
tides, respectively). As judged from its mobility in the gel,
Western analysis and MS analysis, the high molecular
weight band is predominantly a homodimer of the MRP1
protein with a small amount of MRP2 homodimer and/
or heterodimer (Fig. 1Bc). Results of several TAP-tag puri-
fications were identical, including the presence of a SDS-
resistant dimer of the MRPs.

In order to detect putative RNA-sensitive interactions,
the same purification protocol was performed with the
addition of RNase A (0.1 mg/ml) during the first step.
Glycerol gradient sedimentation, elution profile and MS
unction of the native and recombinant mitochondrial ..., Int. J.
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Fig. 1. Purification of the mitochondrial RNA-binding protein (MRP) 1/MRP2 complex by tandem affinity purification (TAP) chromatography. (A) The
TAP-tagged MRP2 complex was purified from a clarified whole cell lysate, which was incubated with IgG-Sepharose beads. The MRP2 protein attached
to a calmodulin-binding peptide (MRP2-CBP) was released by incubation with the tabacco etch virus (TEV) protease and further purified via calmodulin-
affinity chromatography and EGTA release. The purification was checked by Western blot analysis with the specific anti-MRP2 antibody; clarified cell
lysate, flow through from the IgG column (FT I), first wash (Wash I), TEV eluate (TEV), IgG beads after TEV elution (IgG beads), flow through from the
calmodulin-binding column (FT II), second wash (Wash II) and EGTA elutions fractions 1 and 2. Arrows indicate the location of TAP-tagged MRP2
(MRP2-TAP), MRP2-CBP, endogenous MRP2 and heavy (IgG hc) and light chains (IgG lc) of IgG molecule visible in IgG beads sample. (B) Sypro Ruby
staining of calmodulin elution fraction 2 from three different MRP2-TAP-tag purifications from: the whole cell lysate (a); the whole cell lysate with a
glycerol gradient step of MRP2-TAP TEV eluate followed by calmodulin column with EGTA release (b); the mitochondria-enriched fraction including
glycerol gradient step. The calmodulin elution fraction 2 was also analysed by Western blot analysis using anti-MRP1 and anti-MRP2 antibodies (c). All
visible bands were subjected to LC-MS/MS and proteins identified in each band are indicated by arrows. (C) Fractionation of the MRP2-TAP TEV
eluates on a 10–30% glycerol gradient. Fractions were collected from the top of the gradients. Aliquots from all fractions were analysed by SDS–PAGE
probed with anti-MRP2 (a) and anti-MRP1 antibodies (b). Fractions 4–7, which were positive for endogenous MRP2 and MRP1 and tagged MRP2-CBP,
were further subjected to calmodulin affinity column.
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data were very similar to those obtained without the RNase
treatment (data not shown). In another experiment, the
TAP-tag was attached to MRP1 and complexes containing
tagged MRP1 were isolated from the T. brucei mitochon-
dria. The same purification profile as for the MRP2-
TAP-tagged complex was obtained (data not shown).
Please cite this article in press as: Zı́ková, A. et al., Structure and f
Parasitol. (2008), doi:10.1016/j.ijpara.2007.12.009
Since the Leishmania orthologues of MRP1 and MRP2,
Ltp26 and Ltp28, were shown to interact with the RNA
ligase-containing L-complex, editosome and RET1 in an
unstable manner (Aphasizhev et al., 2003a,b), we under-
took analysis of these interactions in T. brucei. After the
first purification step, glycerol gradient fractions of the
unction of the native and recombinant mitochondrial ..., Int. J.
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TEV eluate (Fig. 1C) were subjected to adenylation assays
in order to detect editosomal ligases, but these assays failed
to detect any activity. Next, Western analysis using mono-
clonal antibodies against the core editosomal proteins
(KREPA1, KREPA2, KREPA3 and KREL2) and poly-
clonal antibody against RET1 were performed in order
to detect any possible association with the editosome.
Again, the results were negative, regardless of whether or
not RNase A treatment has been performed during the first
purification step (data not shown).

3.3. Escherichia coli-reconstituted versus natively isolated
T. brucei MRP1/MRP2 complexes

The MRP1 and MRP2 genes were cloned in tandem into
the pETDuet-1 system. Co-expression of both proteins in
E. coli produced a soluble MRP1/MRP2 complex that
was readily purified via Ni-NTA chromatography. This
reconstituted complex, as well as the MRP1/MRP2 com-
plex purified from T. brucei, were used for native size deter-
mination on 4–16% BN gel electrophoresis and visualised
by silver staining. Regardless of the way the complexes
were isolated, they form equally sized high molecular
weight complexes of 100, 200 and 400 kDa, corresponding
to the predominant heterotetramer and its putative multi-
mers (Fig. 2A and B).

3.4. Electron microscopy of the MRP1/MRP2 complex

isolated from T. brucei

The structures of the natively isolated MRP1/MRP2
complex, with and without the RNase A treatment, were
investigated using transmission electron microscopy
(TEM) (see Section 2). Both preparations contained dis-
persed particles of uniform size and shape and were almost
U
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R
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Fig. 2. Blue native electrophoresis of the mitochondrial RNA-binding
protein (MRP) 1/MRP2 complexes isolated from Trypanosoma brucei and
Escherichia coli. The native T. brucei MRP2-tandem affinity purification
(TAP) complex (A) and the recombinant E. coli MRP1/MRP2 complex
(B) were separated on a 4–16% Blue native gel and silver stained (lane 1).
The native high molecular weight marker (Sigma) was used to determine
the size of molecular complexes.
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free of contaminants. Particles extracted from micrographs
were separately aligned, treated with multivariate statistical
analysis and classified. The most representative class aver-
ages of both RNase A untreated and treated MRP1/MRP2
complexes are shown (Fig. 3). Although no symmetry was
imposed during the image analysis, the resulting recon-
structed structures clearly revealed a pseudo-C4 structure
containing a central hole (Fig. 3A and B) with dimensions
essentially identical to the crystal structures of the MRP1/
MRP2 complex reconstituted from proteins overexpressed
in E. coli (Schumacher et al., 2006).

Notably, the overall structure of the T. brucei MRP1/
MRP2 complex with the non-occluded central hole was
retained in the presence of RNA, indicating that the
RNA molecules do not bind in the central hydrophilic cav-
ity. Instead, the extra density observed in the presence of
RNA surrounds the edges of the tetrameric structure,
which corresponds to RNA-binding at the b-sheet face of
the complex and/or the outside loop regions as seen in
the crystal structure with gRNA (Schumacher et al.,
2006). Superimposition of the crystal structure on an aver-
aged TEM picture of the MRP1/MRP2 complex illustrates
the coherence between the natively purified MRP1/MRP2
complex and its E. coli-derived version (Fig. 3C).
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E3.5. Binding activities of the MRP1 and MRP2 proteins, and

the MRP1/MRP2 complex

Since MRP1 was previously shown to be a high affinity
gRNA-binding protein (Lambert et al., 1999), we first
tested whether its binding partner, MRP2, has a similar
property. The gRNA gA6[14] (70 nucleotides long) was
synthesised by in vitro transcription and [32P]-end labelled.
Binding by MRP2 in a native polyacrylamide gel results in
a slower electrophoretic mobility of the labelled gRNA that
is bound in a concentration-dependent fashion, with rela-
tively high concentrations of the protein being required
for efficient binding (Fig. 4A). The presence of a single
RNA-binding site in each MRP protein, which binds
RNA with the same efficacy, was demonstrated by side-
by-side binding assays performed with separately overex-
pressed and purified MRP1 and MRP2 proteins (Fig. 4B).

Further experiments were performed with the MRP1/
MRP2 complex reconstituted in E. coli. First, we tested
whether the complex distinguishes between gRNAs and
pre-mRNAs. As shown in Fig. 4C and D, labelled A6U5,
pre-edited mRNA (74 nucleotides long) covering the first
editing site of the T. brucei ATPase 6 mRNA, and its cog-
nate gRNA gA6[14] were bound with equal efficiency. Nev-
ertheless, the binding pattern differed significantly from
that observed for the solitary MRP1 (Köller et al., 1997;
Müller and Göringer, 2002) and MRP2 proteins
(Fig. 4A). At low protein concentrations (10–50 nM) and
RNA in excess, a single shifted band was present
(Fig. 4C; lanes 3, 4 and 5). However, in excess of the pro-
tein (100 and 250 nM) over RNA, a second shifted band
unction of the native and recombinant mitochondrial ..., Int. J.
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Fig. 3. Transmission electron microscopy image reconstruction of native mitochondrial RNA-binding protein (MRP) 1/MRP2 complexes isolated from
Trypanosoma brucei. (A) View of the MRP1/MRP2 complex prior to the RNase treatment. Clearly visible in the structure is the central hole in the cavity
of the MRP1/MRP2 heterotetramer complex. (B) View of the same complexes after the RNase treatment. Comparison of the RNase-treated and non-
treated complexes indicates that the RNA does not bind in the central cavity but on the surface and/or the outside of the complex. (C) Superimposition of
the crystal structure on an averaged electron microscopy picture of the MRP1/MRP2 complex.
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Fig. 4. Binding activities of the mitochondrial RNA-binding protein (MRP) 1 and MRP2, and the MRP1/MRP2 complex. The icons to the left depict the
RNA–protein interaction. (A) Autoradiogram of a representative binding experiment with the recombinant MRP2 protein and radiolabelled gA6[14]. The
protein concentrations are indicated. The icon to the right indicates one RNA molecule bound to one MRP2 protein. (B) Autoradiogram of a side-by-side
binding experiment with the recombinant MRP1 (lanes 1–3) and MRP2 proteins (lanes 4–6) and radiolabelled gA6[14]. The protein concentrations are
indicated. (C) Autoradiogram of a binding experiment with radiolabelled gA6[14]. The protein concentrations are indicated. The icon to the right indicates
one or two RNA molecules bound to one MRP1/MRP2 complex. (D) Autoradiogram of a binding experiment with radiolabelled A6U5 at the MRP1/
MRP2 complex concentrations indicated (lines 1–9). Control binding reaction was set up with 500 nM BSA (instead of MRP1/MRP2 complex).
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Uappeared at the intensity depending on protein concentra-
tion (Fig. 4C; lanes 6–9).

The observed pattern can be explained by two alterna-
tive models. The first postulates that the lower band repre-
sents single RNA molecule bound to one heterotetrameric
MRP1/MRP2 complex, whereas the upper band represents
single RNA molecule bound to one di-heterotetrameric
complex, a form observed in native gel (Fig. 2). However,
since the crystal structure revealed two identical RNA-
Please cite this article in press as: Zı́ková, A. et al., Structure and f
Parasitol. (2008), doi:10.1016/j.ijpara.2007.12.009
binding sites related by the C2 symmetry (Schumacher
et al., 2006), a second explanation postulating that the
lower and upper bands correspond to the MRP1/MRP2
complexes with two and one RNA molecules bound,
respectively, appears to be more plausible. As a result of
the increased charge, the MRP1/MRP2 complex fully
loaded with two RNA molecules has a higher electropho-
retic mobility (Fig. 4C and D). Whilst the enthalpic contri-
bution to the free energy of binding would be identical for
unction of the native and recombinant mitochondrial ..., Int. J.
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both binding sites, the symmetry of the MRP1/MRP2 com-
plex increases the entropy for RNA-binding to the first
degree. Once the first RNA molecule is bound, the symme-
try of the MRP1/MRP2 complex is lost and binding to the
second degree causes lowering of entropy and is thus less
probable. Therefore, at high protein concentrations, the
competition would result in each MRP1/MRP2 complex
ending up with only a single RNA molecule bound. No
binding activity was detected by the addition of BSA
(Fig. 4D, line 10).

The apparent dissociation constants (Kda) for binding
gRNAs (gA6[14] and gCyb-558) and pre-mRNAs (A6U5
and 50CybUT) were determined for the natively purified
and recombinant MRP1/MRP2 complexes under native
PAGE conditions. Binding of the recombinant complex
to gRNA and/or pre-mRNA molecules is approximately
the same, with the apparent Kda between 140–190 nM
(Table 1).
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3.6. Annealing activities of the MRP1/MRP2 complex

To test whether the MRP1/MRP2 complex promotes
annealing of complementary RNA molecules, as was pre-
viously shown for MRP1 alone (Müller et al., 2001), con-
trol experiments were performed using the natively
purified and recombinant complexes and labelled
gA6[14] or A6U5 RNAs. In an initial experiment, a range
of concentrations of the MRP1/MRP2 complex was
tested for annealing activity of A6U5 pre-mRNA with
its labelled cognate gRNA (Fig. 5A and B). Under the
reaction conditions used (see Section 2), up to 13% of
the input RNA was spontaneously converted into the
annealed product in the absence of the MRP1/MRP2
complex (Fig. 5A, lane 2 and B, lanes 1 and 4). In its
presence, up to 79% of the input RNA was converted into
the annealed product (Fig. 5A, lanes 3–9 and B, lanes 2, 3
and 5). The amount of the pre-mRNA/gRNA hybrid
peaked at 200 nM of the protein and decreased at its high
concentrations (600–1000 nM) (Fig. 5A, lanes 10–14), pre-
sumably because under these conditions annealing was
overcome by the binding activity. With all RNA bound
by the MRP1/MRP2 complex, no free RNA was avail-
able for hybridization, an explanation further supported
by the prevailing species with a single bound RNA under
conditions shown in lane 15 (Fig. 5A).

Using the prediction program for possible hybridization
sites for RNA molecules we found out that duplex forma-
U
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Table 1
Binding of the native and recombinant mitochondrial RNA-binding
proteins (MRP) 1/MRP2 complexes to selected guide RNA and pre-
mRNA molecules in apparent Kda values

Protein A6U5 gA6[14] CybUT gCyb-558

Native complex 117.8 111.7 N/D N/D
Recombinant complex 147.3 143.3 140 190.3

N/D – values not determined.
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tion between the same RNA molecules or between the non-
cognate RNA molecules may occur (Supplementary Figs.
S2A and 2B). To test this prediction, we performed an
experiment with different combinations of gRNAs and
pre-mRNAs (the above described pair, and 50CybUT [70
nucleotides long], a pre-edited mRNA corresponding to
the editing domain of cytochrome B, and its cognate
gRNA gCyb-558 [59 nucleotides long]) added to the
MRP1/MRP2 complex (Fig. 6).

A control reaction containing gA6[14] and 200 nM of
the MRP1/MRP2 complex shows that the higher bands
represent RNA molecules bound to the complex
(Fig. 6A, lane 3), since after the proteinase K treatment
these bands disappear (Fig. 6A, lane 4). Thus in the reac-
tion containing gA6[14] and its cognate pre-edited mRNA
A6U5, the higher band most likely corresponds to the
gRNA/pre-mRNA duplex (Fig. 6A, lane 5). The same size
band representing gRNA/pre-mRNA duplex was observed
in the presence of both RNA molecules but in the absence
of the MRP1/MRP2 complex (Fig. 6, lane 2). The anneal-
ing of the non-cognate gA6[14] and/or CybUT RNA mol-
ecules was not observed under these conditions (Fig. 6A,
lane 6). However, at higher protein concentration
(400 nM) and upon the addition of proteinase K, a higher
band appeared in the reaction containing gA6[14] alone or
with CybUT pre-mRNA (Fig. 6A, lanes 7 and 8). These
higher bands might represent a duplex of two gA6[14] mol-
ecules when only gA6[14] was added to the reaction, and/or
a sub-population of heterogeneous hybrid duplex of the
gA6[14] and CybUT RNAs when reaction contains
gA6[14] and non-cognate CybUT RNAs. An alternative
explanation of the higher bands in lanes 7 and 8
(Fig. 6A) holds that these bands represent different intra-
molecular structures of RNA promoted by the MRP1/
MRP2 complex. Such an explanation, however, contradicts
the predicted thermodynamic stabilities of lowest energy
secondary structures for individual gRNAs and mRNAs
and their hybrids (Supplementary Fig. S2B) (Yu and
Koslowski, 2006; Leung and Koslowsky, 2001). The same
pattern was observed with the labelled pre-edited A6U5
RNA used in the same experimental setup (data not
shown). In order to verify that the described shifted band
is indeed the RNA–RNA annealed product and not an
RNA–protein complex, we show a Sypro Ruby-stained
SDS PAGE gel of the reactions containing 200 or
400 nM of the MRP1/MRP2 complex before and after pro-
teinase K treatment. Obviously, the protein complex was
completely eliminated by the treatment (Fig. 6B).

4. Discussion

Extensive mass spectrometry analysis of the MRP1/
MRP2 complex from the mitochondrion of T. brucei pro-
cyclics, natively purified by TAP-tagging of either of its
subunits, strongly indicated that this RNA-binding com-
plex consists solely of the MRP1 and MRP2 proteins
arranged in a heterotetramer. By its composition confined
unction of the native and recombinant mitochondrial ..., Int. J.
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Fig. 5. Annealing activities of the mitochondrial RNA-binding protein (MRP) 1/MRP2 complex. (A) Autoradiogram of a representative annealing
experiment with the recombinant MRP1/MRP2 complex and radiolabelled gA6[14] and A6U5 pre-mRNA. The protein concentrations are indicated.
Reactions were stopped by the addition of 20 mg/ml proteinase K (lanes 3–14), or the proteinase K treatment was omitted (lane 15). Free, annealed and
bound RNAs are shown by arrowheads to the left. The percentage of annealed RNAs is indicated. The icons to the right depict the RNA–protein
interactions. (B) Stimulation of annealing by the recombinant (grey columns) and natively purified MRP1/MRP2 complexes (black columns). Bars are
derived from the densitometric analysis of several experiments as described in (A). The level of RNA–RNA ‘‘self-annealing” in the absence of the MRP1/
MRP2 complex is shown in lanes 1 and 4. The reaction was performed with 50 nM (lanes 2 and 5) and 100 nM (lane 3) of the complex.
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Fig. 6. Specific and non-specific annealing activities of the mitochondrial
RNA-binding protein (MRP) 1/MRP2 complex. (A) Autoradiogram of a
representative annealing experiment with 200 and 400 nM of the
recombinant MRP1/MRP2 complex, radiolabelled gA6[14], and non-
labelled pre-mRNA A6U5 or CybUT. Free, annealed and bound RNAs
are shown by arrowheads to the left and the icon to the right depicts the
RNA–RNA interaction. (B) SDS–PAGE and Sypro Ruby staining of the
MRP1/MRP2 complex at 200 and 400 nM concentration before and after
proteinase K treatment.
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to MRP1 and MRP2, the T. brucei complex differs from
the L. tarentolae Ltp26/Ltp28 complex that was reported
to contain substochiometric amounts of the AP1, AP2
and AP3 proteins (Aphasizhev et al., 2003a,b). Interest-
ingly, when the T. brucei homologue of the L. tarentolae

AP-1 was used as bait for the TAP-tag purification, the
purified protein complex contained TbAP-1 and TbAP-2
along with a few proteins of unknown function, but not
the MRP1 or MRP2 proteins (H. Hashimi and J. Lukeš,
unpublished data). The MRP1 protein and the Ltp26/
Ltp28 complex were shown to interact with the editosomal
activities in a transient and RNA-sensitive manner and
under low salt conditions (Allen et al., 1998; Aphasizhev
et al., 2003a,b), whilst no such interactions have been
reported for the C. fasciculata gBP27/gBP29 complex
(Blom et al., 2001). Despite numerous attempts, we were
unable to show any of these interactions for the MRP1/
MRP2 complex in T. brucei procyclics. Blue native electro-
phoresis of the MRP1/MRP2 complex indicated that a
100 kDa heterotetramer is capable of forming higher
molecular weight complexes probably by oligomerization
of the heterotetramer. Three major complexes of approxi-
mate size 100, 200 and 400 kDa are formed under native
conditions. Similar high molecular weight complexes were
reported from C. fasciculata (Blom et al., 2001) and L. tar-

entolae (Aphasizhev et al., 2003a,b).
unction of the native and recombinant mitochondrial ..., Int. J.
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An implication from the TEM analysis is that the
MRP1/MRP2 complex, which was natively purified from
T. brucei, forms a pseudo-C4 symmetrical structure.
Although the TEM resolution does not allow distinction
between the MRP1 and MRP2 subunits, we were able to
superimpose the crystal structure upon an averaged TEM
picture of the complex. This clearly illustrates the coher-
ence between the genuine T. brucei MRP1/MRP2 complex
and its version reconstituted in E. coli. The TEM analysis
also revealed that the overall architecture of the complex
does not change upon RNA-binding. The natively purified
MRP1/MRP2 complex with bound RNA has an altered
structure at the edges of the tetramer, whereas the promi-
nent central hole remains unchanged. These findings are
in perfect agreement with the crystal structure (Schumach-
er et al., 2006) and put it into a biologically relevant
perspective.

The capacity of the T. brucei MRP1 protein to bind
RNA molecules (Müller et al., 2001) was demonstrated
here also for the MRP2 protein and the MRP1/MRP2
complex natively purified from T. brucei. Since each free
MRP protein binds a single RNA molecule (Köller et al.,
1997), one would expect that the heterotetrameric MRP1/
MRP2 complex will bind four RNA molecules. However,
our binding experiments confirmed the results obtained
by crystallography, namely that there are only two RNA-
binding sites in the complex. Combined, these data showed
that the MRP1/MRP2 complex binds in a different mode
than the MRP1 and MRP2 proteins alone.

As was shown by crystallography, the gRNA stem/loop
II base is anchored to the basic surface of the MRP1/
MRP2 complex, whilst the stem/loop I is unfolded and
its bases are exposed to the solvent (Schumacher et al.,
2006). We propose that the complex destabilises the
RNA of low thermodynamic stability converting them to
an annealing-active conformation and thus functions as
an RNA matchmaker. Whereas the annealing activity of
the native and recombinant MRP1/MRP2 complex was
detectable at protein concentration as low as 10 nM, its
peak was observed at 100 to 250 nM, causing the conver-
sion of 70 to 80% of the added RNA into the double
stranded form. Comparable annealing activities have been
described for the Ltp26/Ltp28 complex of L. tarentolae

(Aphasizhev et al., 2003a,b).
It is generally accepted that the first step in assisted

hybridization of gRNA to pre-mRNA is gRNA-binding
by the MRP1/MPR2 complex that recognises the arche-
typal secondary structure of gRNA, namely the stem-loop
II domain (Hermann et al., 1997; Allen et al., 1998; Schum-
acher et al., 2006). However, our binding data indicate that
the MRP1/MPR2 complex binds gRNA and pre-mRNA
with almost the same affinity, which might imply that
assisted hybridization can be initiated by either of these
species. This speculation is further supported by chemical
and enzymatic probing and secondary structure prediction
of 50 CybUT and A6U5 pre-mRNAs revealing that, in
analogy to gRNAs, pre-mRNAs adopt a higher order
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structure (J. Kopečná and L. Trantı́rek, unpublished
data).

The initiation of the editing process assumes formation
of an RNA hybrid between pre-mRNA and its cognate
gRNA, an event thought to involve several steps. Based
on the available data (Müller et al., 2001, 2002; Aphasizhev
et al., 2003a,b; Schumacher et al., 2006; this study), we pro-
pose that during the first step, by binding to positively
charged surface of the MRP1/MRP2 complex (Fig. 7A),
the gRNA or pre-mRNA is converted to an annealing-
active conformation (Fig. 7B). At the same time, repulsion
between the negatively charged bound RNA and
approaching RNA is lowered, and the heteroaromatic
bases of the bound molecule are aligned to base pair with
the incoming RNA. This would lower the energy required
to reach the transition state of hybridization reaction rep-
resented by base-pairing of pre-mRNA with the MRP1/
MRP2 complex-bound gRNA (Fig. 7C). The catalytic
cycle is most likely completed by the entropically driven
release of the RNA hybrid from the complex (Fig. 7D).

Predictions of possible hybridization sites for several
RNA molecules provide a possible explanation for the for-
mation of non-cognate RNA hybrids observed in vitro.
They revealed that annealing between the same or non-cog-
nate RNA molecules might occur, with the formation of
the cognate pairs not always being a thermodynamically
favourable process (Supplementary Fig. S2A, B). The small
differences in free energies of dimer formation between cog-
nate and non-cognate RNA pairs suggest that enzymatic
catalysis of the hybridization process is required to prevent
extensive accumulation of the non-translatable RNA
hybrids, which would adversely affect the efficiency of edit-
ing. Since these predictions are based on the primary
sequences and do not consider the formation of stable sec-
ondary structure elements, and assume non-specific mech-
anism of the MRP1/MRP2 complex-assisted annealing,
one has to keep in mind, however, that these predictions
provide only a raw qualitative estimate.

Although the MRP1/MRP2 complex is also able to
catalyse the annealing of non-cognate RNA pairs
in vitro, all available data indicate that the complex-
assisted formation of the cognate gRNA/pre-mRNA pair
is a preferred reaction route. The product specificity of
the MRP1/MRP2 complex can be explained by contacts
between the protein, and both single- and double-stranded
regions of the gRNA (Schumacher et al., 2006). In this
way, the protein orientates the conserved stem-loop II of
gRNA that may represent a sterical and charge hindrance
for the incoming RNA molecules (Fig. 7) and thus func-
tions as a factor discriminating amongst different gRNA
and pre-mRNA species (Hermann et al., 1997; Allen
et al., 1998).

Whilst this finding is in accordance with the proposed
mechanism of assisted RNA hybridization via non-spe-
cific reduction of the negative charge of the RNA back-
bone (Schumacher et al., 2006), it also implies that along
with the cognate duplexes, spuriously mismatched
unction of the native and recombinant mitochondrial ..., Int. J.
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Fig. 7. Proposed mechanism of catalysed annealing of two RNA molecules by the mitochondrial RNA-binding protein (MRP) 1/MRP2 complex. The
mechanism involves high affinity binding of the MRP1/MRP2 complex to RNA and stabilization of a bound RNA in an annealing-competent
conformation. Two separate guide (g) RNA-binding determinants were proposed for the MRP1/MRP2 complex; a binding pocket for the stem/loop II
and for the stem/loop I (the anchor sequence). The crystal structure revealed that the base of the stem/loop II is bound by one site (MRP2), whilst the
anchor sequence is bound by a second binding platform (MRP1) (A). The MRP1/MRP2- stem/loop II interaction would then disrupt the stem/loop I-
stem/loop II interaction, tethering the thermodynamically labile anchor sequence (Schumacher et al., 2006). The end result of MRP1/MRP2-gRNA-
binding is the presentation of the anchor sequence in an unfolded state with the bases exposed to the solvent in a conformation suitable for hybridization
with cognate pre-mRNA (B). At the same time, repulsion between the negatively charged bound RNA and approaching RNA is lowered, and the
heteroaromatic bases of the bound molecule are aligned to base pair with the incoming RNA. (C). The catalytic cycle is most likely completed by the
entropically driven release of the RNA hybrid from the complex (D). Schematization of the components is based on the crystal structure of in vivo
reconstituted MRP1/MRP2 complex in Escherichia coli (Schumacher et al., 2006) [i], gRNA secondary structure derived from the enzymatic probing data
(Hayman and Read, 1999) [ii], co-crystalisation of the MRP1/MRP2 complex with gRNA (Schumacher et al., 2006) [iii], secondary structure of the A6U5
pre-mRNA predicted using the program mfold (Mathews et al., 1999; Zuker, 2003) [iv], and secondary structure of the gRNA/pre-mRNA hybrid derived
from the enzymatic and chemical probing data (Leung and Koslowsky, 2001) [v]. To be compatible with experimental data, the proposed scenario
postulates the initiation of the hybridization process by either gRNA or pre-mRNA-binding to the MRP1/MRP2 complex.
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The formation of non-cognate RNA pairs may be
responsible for the frequently observed ‘‘misediting by
misguiding” (Sturm et al., 1992; Arts et al., 1993; Maslov
et al., 1994). This unexpected flexibility and seemingly
mistake-prone mechanism may in fact generate protein
diversity, the first case of which has recently been
detected (Ochsenreiter and Hajduk, 2006). At this point
we can only speculate whether this is the reason why
the extremely complex and apparently superfluous form
of RNA editing, as it is found in the kinetoplastid mito-
chondrion, was not eliminated during the long evolution-
ary history of these flagellates.
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Köller, J., Nörskau, G., Paul, A.S., Stuart, K., Göringer, H.U., 1994.
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Parasitol. (2008), doi:10.1016/j.ijpara.2007.12.009
E
D

P
R

O
O

F
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