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Review
Glossary

Acidocalcisomes: acidic calcium stores rich in polyphosphate present in

different organisms from bacteria to humans.

Aequorin: fluorescent protein from the jellyfish Aquora victoria used to detect

calcium in vivo.

Antimycin A: potent inhibitor of the respiratory chain at the level of

cytochrome b–c1.

Aspartate-glutamate carrier: transporter that exchanges aspartate for gluta-

mate located at the mitochondrial outer membrane.

ATP-Mg-Pi carrier: transporter that exchanges ATP-Mg for Pi located at the

mitochondrial outer membrane.

Bcl-2 (B cell lymphoma 2) family: a family of apoptosis regulator proteins.

Caspases: proteases involved in cell death.

Excavata: a supergroup of unicellular eukaryotes that include many human

parasites.

Isocitrate dehydrogenase: enzyme that catalyzes the conversion of isocitrate to

succinate in the mitochondrial matrix.

Mitochondria: membrane-enclosed organelles found in most eukaryotic cells.

Only one mitochondrion per cell is present in trypanosomes. As in other

eukaryotes, its compartments include the outer membrane, the intermembrane

space, the inner membrane, and the matrix.

Oligomycin: inhibitor of the mitochondrial ATP synthase.

Petite: yeasts and trypanosomes that have lost most or all of their

mitochondrial DNA.

Pyruvate dehydrogenase: enzyme that catalyzes the conversion of pyruvate

into acetyl-CoA.

Ruthenium red: potent inhibitor of the mitochondrial calcium uniporter.

Ruthenium 360: potent inhibitor of the mitochondrial calcium uniporter related

to ruthenium red.
The ability of mitochondria to take up Ca2+ was discov-
ered 50 years ago. This calcium uptake, through a mito-
chondrial calcium uniporter (MCU), is important not only
for the regulation of cellular ATP concentration but also
for more complex pathways such as shaping Ca2+ signals
and the activation of programmed cell death. The mo-
lecular nature of the uniporter remained unknown for
decades. By a comparative study of mitochondrial pro-
tein profiles of organisms lacking or possessing MCU,
such as yeast in the former case and vertebrates and
trypanosomes in the latter, two groups recently found
the protein that possesses all the characteristics of the
MCU. These results add another success story to the
already substantial contributions of trypanosomes to
mammalian biochemistry.

Mitochondrial discovery
Mitochondria (Glossary) have a central role in intracellular
Ca2+ homeostasis, and it is well-established that intrami-
tochondrial Ca2+ concentration can reach micromolar
values of tens to hundreds upon a few micromolar rise
in cytosolic Ca2+ [1,2]. This is because mitochondria are
exposed to microdomains of high Ca2+ concentration in
proximity to sites of Ca2+ release at the endoplasmic
reticulum (ER), or to Ca2+ channels at the plasma mem-
brane [1–6]. This Ca2+ uptake is important for shaping the
amplitude and spatiotemporal patterns of cytosolic Ca2+

increases [7–9] and for regulating the activity of three
mitochondrial dehydrogenases. Intramitochondrial Ca2+

stimulates a pyruvate dehydrogenase phosphatase that
activates the pyruvate dehydrogenase or allosterically
activates 2-oxoglutarate- and isocitrate-dehydrogenases,
resulting in increased ATP production [10–15]. Activation
by Ca2+ of metabolite carriers on the external face of the
mitochondrial inner membrane also facilitates this stimu-
lation of energy production [16,17]. Excessive Ca2+ uptake,
however, favors the formation of the ‘permeability transi-
tion pore’, leading to the release of pro-apoptotic factors in
the cytosol and cell death (reviewed in [18]).

Under physiological conditions, mitochondrial Ca2+ up-
take occurs by a uniport mechanism driven electrophoreti-
cally by the negative-inside membrane potential without
direct coupling to ATP hydrolysis or transport of other ions
[19]. The activity of this mitochondrial calcium uniporter
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(MCU) was found 50 years ago [20,21], and the biophysical
properties of this Ca2+-selective channel were extensively
characterized [19,22]. However, the molecular nature of
the channel was only recently identified as a result of
progress in genome sequencing and the knowledge of the
distribution of the uniporter in different eukaryotes
[23,24]. Trypanosomes had a fundamental role in this
discovery.

Discovery of the mitochondrial calcium uniporter (MCU)
of trypanosomes
For many years after discovery of the MCU in mammalian
mitochondria [20,21] it was thought that less-complex life-
forms such as plants, insects and other invertebrates [25] or
unicellular organisms, such as yeast [26], lacked a specific
uptake pathway. This situationwas rectified in 1989 [27,28]
when it was reported that epimastigotes of Trypanosoma
cruzi, the etiologic agent of Chagas disease, possess a MCU
with characteristics similar to those described inmammali-
an mitochondria: electrogenic transport, sensitivity to
Thapsigargin: potent inhibitor of sarcoplasmic–endoplasmic reticulum (SER-

CA) calcium ATPase.
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rutheniumred, and lowaffinity for the cation.Asoccurswith
mammalian mitochondria, addition of Ca2+ to digitonin-
permeabilized T. cruzi epimastigotes in the presence of
mitochondrial substrates, such as succinate, and absence
of ATP, stimulates respiration (Figure 1a), and this is
accompanied by ruthenium red-sensitive Ca2+ uptake
(Figure 1b) [28]. Successive Ca2+ addition reveals the high
capacity of these mitochondria to accumulate Ca2+

(Figure 1b) [28]. Ca2+ uptake also results in a small decrease
in membrane potential in agreement with its electropho-
retic transfer into the mitochondria (Figure 1c) [29].

This MCU was later described in other trypanosomatids
suchasLeishmaniabraziliensis [30],Leishmaniamexicana,
Leishmania agamae, Crithidia fasciculata [31],Leishmania
donovani [32], in the infective stages of T. cruzi [33,34], and
finally inTrypanosomabrucei [35–37]. Thefinding of aMCU
uniporter in the bloodstream (BS) stage ofT. brucei [38] was
surprising because these stages lack a respiratory chain.
However, Lehninger et al. had described in 1963 [39] that
Ca2+ uptake into rat liver mitochondria under favorable
conditions could be energized by ATP in the absence of
respiration, in which case it was inhibited by oligomycin,
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Figure 1. Evidence for a mitochondrial calcium uniporter (MCU) in Trypanosoma cruzi. (
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and not by inhibitors of the respiratory chain. This is also
what happens inBS trypanosomes: themitochondrialmem-
brane potential is dependent on hydrolysis of ATP by the
ATP synthasewhich acts as anATPase [38,40–42], allowing
Ca2+ still to be electrophoretically transported by the MCU
[38]. Figure 1d shows that the membrane potential of BS
trypanosomes is collapsed by oligomycin. Ca2+ uptake byBS
trypanosomes has three characteristics: (i) it takes place
until the ambient free Ca2+ concentration is lowered to 0.6–

0.7 mM, (ii) it is inhibited by oligomycin, and (iii) it is
associated with the depolarization of the inner membrane
energizedbyATP.These results indicate thatCa2+uptake is
mediated by the ATPase-dependent energization of the
inner mitochondrial membrane [38].

Discovery of the MCU Protein
The evolutionary conservation of a MCU in vertebrates
and kinetoplastids, and its absence in yeast, was utilized to
identify proteins required for Ca2+ uptake [43]. From an
inventory of 1098 mouse mitochondrial proteins from 14
tissues, 1013 of which mapped to human genes (MitoCarta
[44]), 18 fit the following criteria: (i) localization in the
+ RR
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inner mitochondrial membrane, (ii) expression in the ma-
jority of mammalian tissues, and (iii) having homologs in
vertebrates and kinetoplastids but not in the yeast Sac-
charomyces cerevisiae [43]. An RNAi screen of the top 13
candidates allowed identification of the mitochondrial cal-
cium uptake 1 (MICU1) protein, an MCU regulator. Use of
a similar exclusionmethod and examining proteins with at
least two transmembrane domains that are not expressed
in yeast but conserved in kinetoplastids, one protein
(NP_001028431 in Mus musculus) was identified and
namedMCU [23]. Figure 2 shows thatMCUhas two highly
conserved transmembrane domains that are present in
several eukaryotes including trypanosomatids. Real-time
PCR demonstrated a universal tissue expression of the
MCU protein and coexpression with MICU1 in mice [23].
Working withHeLa cells, silencingMCU by RNAi revealed
a role of this protein in mitochondrial Ca2+ uptake inde-
pendent of changes in the mitochondrial membrane poten-
tial. Overexpression of the gene increased the speed of Ca2+

uptake and mitochondrial Ca2+ concentration, and sensi-
tized the cells to cell death following H2O2 or ceramide
treatment due to Ca2+ overload. The recombinant protein
was purified and showed channel activity in lipid bilayers,
and mutagenesis of charged amino acids (glutamines) in
the presumed pore-forming region of MCU abolished its
channel activity. In parallel, another study performed
complementary computational analyses to predict proteins
functionally related to MICU1 and essential for mitochon-
drial Ca2+ uptake – and spotlighted the same protein
CCDC109A (NM_138357.1 in Homo sapiens) which was
also named MCU [24]. RNAi experiments were also per-
formed in HeLa and HEK-293 cells, as well as in mouse
liver, to investigate the role of MCU in mitochondrial Ca2+

uptake. In contrast to the results of De Stefani et al. [23],
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Figure 2. The mitochondrial calcium uniporter includes two highly conserved transmem

region of MCU proteins from 19 eukaryotes including several trypanosomatids. The gr
overexpression of MCU by Baughman et al. [24] failed to
stimulate Ca2+ uptake; their topology experiments sug-
gested that the N- and C-termini of MCU face the matrix
rather than the intermembrane space, and a large complex
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alone. These discrepancies will need to be worked out in
the future.

Roles of mitochondrial Ca2+ in trypanosomes
The roles of mitochondrial Ca2+ in trypanosomes are ap-
parently more limited than in mammalian cells. None of
the dehydrogenases stimulated by Ca2+ in vertebrates [45]
have been studied in detail in trypanosomatids. There is no
evidence that the pyruvate dehydrogenase E1 subunit,
whose gene was identified in T. cruzi [46], is activated
by dephosphorylation, as is the mammalian orthologous
enzyme, although it seems to possess phosphorylation sites
with similarity to those of the mammalian enzyme [46].
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mate carrier (AGC) and ATP-Mg-Pi carriers (SCaMCs),
which in mammalian cells are known to be regulated by
Ca2+ [17], the orthologs in trypanosomes lack EF-hand
domains that are present even in the S. cerevisiae homolog
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Experiments using aequorin targeted to the mitochon-
dria of T. brucei revealed that intramitochondrial Ca2+

concentrations in T. brucei can reach values much higher
than cytosolic Ca2+ rises when Ca2+ influx through the
plasma membrane or Ca2+ release from acidic calcium
stores (acidocalcisomes) are stimulated [37], just as in
mammalian cells [1,2]. In fact, membrane potential-depen-
dent Ca2+ uptake into themitochondrion ofT. brucei can be
induced, as occurs in the human organelle, at both nano-
and micromolar concentrations [49]. These results suggest
a very close proximity of these organelles and the presence
of microdomains of high Ca2+ concentration in the vicinity
of the plasma membrane or acidocalcisomes [37]. Because
the sarcoplasmic–endoplasmic reticulum Ca2+-ATPase
(SERCA) of T. brucei has low sensitivity to thapsigargin,
a microdomain of high Ca2+ concentration between the ER
and the mitochondria could not be established in these
studies [37]. However, these results suggest that one of the
main functions of theMCU in trypanosomeswould be, as in
mammalian mitochondria [7–9], to shape the amplitude
and spatiotemporal patterns of cytosolic Ca2+ increases. In
mammalian cells, the clustering of the outer mitochondrial
membrane voltage-dependent anion channels (VDACs) at
the ER/mitochondrial contact sites and in close contact
with the inositol 1,4,5-trisphosphate receptor (IP3R)
appears to be limiting for the Ca2+ uptake capacity of
the organelle when Ca2+ is released from the ER [50].
Trypanosomes possess a single VDAC ortholog, porin,
which is required for mitochondrial metabolite transport
and is essential under growth conditions that depend on
oxidative phosphorylation [51,52], but the localization of
their IP3R-like proteins is unknown [53].

Mitochondrial Ca2+ is a recognized contributor to pro-
grammed cell death (PCD), or apoptosis, in trypanosoma-
tids. Morphological features that can be attributed to PCD,
such as shrinkage, membrane blebbing, mitochondrial
alterations and chromatin condensation were described
in T. cruzi as early as 1977 [54]. Trypanosomatids, howev-
er, lack some of the key regulatory or effector molecules
involved in apoptosis in mammalian cells, such as the
tumor necrosis factor (TNF)-related family of receptors,
Bcl-2 familymembers, and caspases [55,56]. Mitochondrial
Ca2+ overload with changes in mitochondrial membrane
potential, reactive oxygen species (ROS) generation and
release of cytochrome c have been observed upon different
triggers of cell death in trypanosomatids [57]. In T. brucei,
the production of ROS impairs mitochondrial Ca2+ trans-
port, leading to its accumulation in the nucleus, causing
cell death [58]. In Leishmania, a mitochondrial endonucle-
ase G is released and translocated to the nucleus [59]
leading to stimulation of a caspase-independent, apopto-
sis-like cell death (reviewed in [57]). T. cruzi appears to be
highly resistant to mitochondrial permeability transition
[27], and apoptosis-like death upon mitochondrial Ca2+

overload is dependent on superoxide anion generation [60].
In summary, mitochondrial Ca2+ uptake in trypanoso-

matids appears to have a role in shaping the amplitude of
cytosolic Ca2+ increases after influx through the plasma
membrane or release from acidocalcisomes, and in apopto-
sis-like death, but apparently not in the regulation of ATP
production.
34
How mitochondrial Ca2+ is released in trypanosomes
The mitochondrial Ca2+ efflux pathway in mammalian
cells appears to promote the exchange of matrix Ca2+ by
external Na+ (in excitable cells) or H+ (in non-excitable
cells) [61]. A gene encoding the Na+/Ca2+ exchanger NCLX
was recently identified [62] and the encoded protein was
shown to possess all of the characteristics of the Na+/Ca2+

exchange activity described years ago [61]. The exchanger
is located in the inner mitochondrial membrane and is
inhibited by CGP-37157, which was originally discovered
as an inhibitor of this activity in 1988 [63]; its overexpres-
sion enhances Na+/Ca2+ exchange activity, and its silenc-
ing reduces it. However, there are no orthologs of this gene
in trypanosomatids. Evidence for a Ca2+ efflux pathway in
T. cruzi has been presented [27] and, in agreement with
those results, trypanosomatids possess an ortholog to the
Letm1 protein, which has recently been described as
encoding a mitochondrial Ca2+/H+ exchanger [64]. Surpris-
ingly, the mammalian exchanger is blocked by ruthenium
360, and partially inhibited by CGP-37157. This finding is
puzzling because the insensitivity of mitochondrial Ca2+

exchangers to ruthenium red had been established before
[61]; further work is necessary to confirm, or exclude, the
direct role of Letm1 in mitochondrial Ca2+ handling [50].

Uniqueness of the trypanosome mitochondrion
Trypanosomes harbor peculiar mitochondria. As members
of Excavata, recently viewed as the most basal eukaryotic
supergroup [65], they retain some putatively very primi-
tive features, in particular the unusual biogenesis of cyto-
chrome c [66] and highly simplified protein-import
machinery [67]. This machinery probably evolved immedi-
ately subsequent to endosymbiosis, qualifying kinetoplas-
tids as strong candidates for one of the earliest extant
eukaryotic lineages [68].

The existence of a singlemitochondrion per cell in either
active or repressed form (see below), along with the avail-
ability of high quality mitoproteome of procyclic form (PF)
T. brucei [69], combined with our rather advanced knowl-
edge of the kinetoplastid organelle, qualify it as a very
suitable model mitochondrion, already successfully ex-
plored in several ways.

The trypanosome mitochondrion as a model organelle
Wehave so far presented an elegant use of trypanosomes in
elucidating the molecular basis of mitochondrial Ca2+

influx. Similarly, dissection of the replication and mainte-
nance of the mitochondrial DNA in kinetoplastids (kDNA)
network, the first extranuclear DNA ever observed, was
very instrumental for studies of less abundant organellar
DNAs in other eukaryotes, and provided one of the key
insights into the topology of circular DNA molecules
([70,71]) for recent reviews). Another landmark, achieved
by studying this organelle in T. brucei, Leishmania tar-
entolae andCrithidia fasciculata, was the discovery of RNA
editing ([72,73] for recent reviews). More recently, it was
the conspicuous absence of several genes in the genomes of
trypanosomatids and a few other eukaryotes that was
instrumental for the identification, through phylogenetic
profiling, of novel subunits of human NADH dehydroge-
nase (respiratory complex I) [44].
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T. brucei is particularly suitable for studies of processes
that control the activity of its single mitochondrion. Al-
though the organelle in the PC stage is metabolically and
physiologically similar to the conventional eukaryotic mi-
tochondrion, it transforms into a highly suppressed form in
the BS stage [74]. Proteins involved in kDNA replication,
mitochondrial RNA editing and processing, and tRNA
import and translation, are present and essential through-
out the life cycle [75–79]; however, the morphology and
metabolism of the organelle undergo extensive remodeling
[74]. The ability to obtain fully functional PFmitochondria,
as well as the downregulated vesicles from the BS stage,
makes them very attractive for studies of differential
expression and/or import of mitochondrial proteins.

As mentioned above, another major difference between
the PC and BS mitochondria is that FoF1-ATP synthase
produces ATP in the former, but consumes it in the latter
organelle, being essential in both [41]. The dramatic switch
between the antagonistic activities of FoF1-ATP synthase
during the trypanosome life cycle strikingly resembles the
frequently lethal switch of orthologous synthase in the
mitochondria of human heart during myocardial ischemia.
This is not the only peculiar and unexpected similarity
between the human andT. bruceimitochondria. Despite its
uniquely simple protein-import machinery [67,68], the T.
brucei organelle readily accepts complex human mitochon-
drial import signals, making functional analyses of human
proteins fairly straightforward in this background [79,80].
Moreover, it is worth noting thatmitoribosomes in humans
and trypanosomes are the most protein-rich and rRNA-
poor ribosomes known [69,81], thus it is possible that they
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Another interesting phenomenon observed in the Afri-
can trypanosomes is that some lineages are prone, in
nature or in the laboratory, to lose parts of their kDNA,
with some mitochondria being totally devoid of kDNA
[82,83]. Their host strains, T. brucei evansi, are in fact
‘petite’ mutants [83], which spread out of Africa due to their
acquired independence from the tsetse fly as a vector [84].
These trypanosomes are particularly suitable for analyses
of the interactions between the mitochondrion and cell
nucleus because organellar transcription and translation
are absent without the requisite mitochondrial-encoded
genes. It is somewhat counterintuitive that proteins re-
sponsible for kDNA replication and RNA metabolism con-
tinue to be imported [83,85], and the same was recently
shown for import of nuclear-encoded tRNAs into the mito-
chondrion [76,77]. It will be exciting to examine further the
extent of this apparent lack of communication between the
autonomous mitochondrion and the nucleus.

Concluding remarks
The inner mitochondrial membrane of trypanosomatids
possesses a uniport carrier for calcium (MCU). This carrier
allows the electrogenic entry of the cation driven by the
electrochemical gradient generated by respiration in most
trypanosomes, or by ATP hydrolysis in T. brucei BS forms
(Figure 3). Calcium efflux, however, takes place via a
different pathway which appears to catalyze the electro-
neutral exchange of internal calcium by external protons,
probably undertaken by an ortholog of Letm1. Biochemical
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evidence for Ca2+ uptake and for Ca2+-release channels is
available for several trypanosomatids. The discovery of a
functional MCU in trypanosomes, as well as knowledge of
its wide distribution in other eukaryotes and absence in
yeast, not only led to finding the molecular nature of this
channel in mammalian mitochondria, but also demon-
strates the valuable contribution of an organelle of a
unicellular parasite in dissecting the functions of mito-
chondrial proteins in general.
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73 Lukeš, J. et al. (2005) Unexplained complexity of the mitochondrial
genome and transcriptome in kinetoplastid flagellates.Curr. Genet. 48,
277–299

74 Hannaert, V. et al. (2003) Evolution of energy metabolism and its
compartmentation in Kinetoplastida. Kinetoplastid Biol. Dis. 2, 11

75 Hashimi, H. et al. (2010) The assembly of F1F0-ATP synthase is
disrupted upon interference of RNA editing in Trypanosoma brucei.
Int. J. Parasitol. 40, 45–54

76 Cristodero, M. et al. (2010) Mitochondrial translation is essential in
bloodstream form of Trypanosoma brucei. Mol. Microbiol. 78, 757–769

77 Paris, Z. et al. (2011) Futile import of tRNAs and proteins into the
mitochondrion of Trypanosoma brucei evansi.Mol. Biochem. Parasitol.
176, 116–120

78 Niemann, M. et al. (2011) Mitochondrial translation in
trypanosomatids: a novel target for chemotherapy? Trends Parasitol.
27, 429–433

79 Long, S. et al. (2011) Stage-specific requirement for Isa1 and Isa2
proteins in the mitochondrion of Trypanosoma brucei and heterologous
rescue by human and Blastocystis orthologues. Mol. Microbiol. 81,
1403–1418

80 Long, S. et al. (2008) Mitochondrial localization of human frataxin is
necessary but processing is not for rescuing frataxin deficiency in
Trypanosoma brucei. Proc. Natl. Acad. Sci. U.S.A. 105, 13468–13473
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