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Biosynthesis of the
neurotoxin domoic acid in
a bloom-forming diatom
John K. Brunson1,2*, Shaun M. K. McKinnie1*, Jonathan R. Chekan1, John P. McCrow2,
Zachary D. Miles1, Erin M. Bertrand2,3, Vincent A. Bielinski4, Hanna Luhavaya1,
Miroslav Oborník5, G. Jason Smith6, David A. Hutchins7,
Andrew E. Allen2,8†, Bradley S. Moore1,9†

Oceanic harmful algal blooms of Pseudo-nitzschia diatoms produce the potent mammalian
neurotoxin domoic acid (DA). Despite decades of research, the molecular basis for its
biosynthesis is not known. By using growth conditions known to induce DA production in
Pseudo-nitzschia multiseries, we implemented transcriptome sequencing in order to identify
DA biosynthesis genes that colocalize in a genomic four-gene cluster.We biochemically
investigated the recombinant DA biosynthetic enzymes and linked their mechanisms to the
construction of DA’s diagnostic pyrrolidine skeleton, establishing a model for DA biosynthesis.
Knowledge of the genetic basis for toxin production provides an orthogonal approach to bloom
monitoring and enables study of environmental factors that drive oceanic DA production.

O
ceanic harmful algal blooms (HABs) are
intensifying in frequency and severity in
association with climate change (1–3).
This phenomenon was exemplified in the
summer of 2015when theNorthAmerican

Pacific coast experienced the largest HAB ever
recorded, spanning the Aleutian Islands of Alaska
to the Baja peninsula of Mexico (fig. S1) (4). This
bloom caused widespread ecological and eco-
nomic devastation, resulting in the deaths of ma-
rine mammals and the closure of beaches and
fisheries. The dominant algal species in the 2015
HAB were pennate diatoms of the globally dis-
tributed genus Pseudo-nitzschia, which are often
associated with high production of the excitatory
glutamate receptor agonist domoic acid (DA; 1).
Mammalian consumption of DA-contaminated
shellfish exerts its toxicity at the AMPA and

kainate ionotropic glutamate receptors of the
central nervous system (5, 6). In humans, a high,
single-exposure dose of DA can cause amnesic
shellfish poisoning (ASP), which involves symp-
toms of amnesia, seizures, coma, and in extreme
cases, death. Even chronic, low-level consump-
tion of DAmay lead to kidney damage, cognitive

deficit, and impairment of fetal development,
making DA outbreaks an important human
health problem (7–10). Similar neurotoxic symp-
toms have been observed in birds and marine
mammals such as sea lions, which suffer spatial
memory impairment linked to DA consumption,
likely leading to increases in sea lion strandings (11).
Although abiotic (12) and biotic (13) factors

have been shown to affect toxicity in culture, the
biological and physicochemical mechanisms un-
derlying DA production in Pseudo-nitzschia are
unclear.Moreover, not allPseudo-nitzschiablooms
produceDA (12). An understanding of the genetic
basis of DA biosynthesis in diatoms would facili-
tate determination of the cellular pathway that
controls oceanic DA production and thereby di-
atom toxicity.
Stable isotope experiments (14, 15) suggest

that DA is composed of glutamic acid (Glu) and
geranyl pyrophosphate (GPP) building blocks.
No pathway that involves these starting mate-
rials to construct the characteristic pyrrolidine
ring of DA has been previously characterized,
and thus, our ability to predict candidate bio-
synthetic genes using traditional bioinformatic
methods was limited. However, we postulated
that a redox enzyme, such as a cytochrome P450
(CYP450), generates the 7′-carboxylic acid of DA
through three successive oxidations, a reaction
common in all branches of life (Fig. 1A) (16).
To identify putative DA biosynthetic genes, we

examinedpatterns of transcriptional activity under
previously established conditions—phosphate lim-
itation and elevated CO2 (17)—that stimulate DA
production. We created a differential expression
dataset for nearly 20,000 Pseudo-nitzschia
multiseries RNA transcripts (table S1). A small
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Fig. 1. Identification of domoic acid biosynthetic genes from transcriptomic and genomic data.
(A) Structure of DA (1) and its proposed biosynthetic building blocks (14, 15). (B) Ten most up-regulated
P. multiseries transcripts under previously reported DA-induction conditions (17). Differential expression
changes are each shown with reference to the PCO2 conditions listed across the top of the heatmap, with
phosphate concentrations held constant. (C) DA biosynthesis (dab) gene cluster in the P. multiseries genome.
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fraction (~500; 2.5%) showed consistent up-
regulation under phosphate limitation (fig. S2
and table S2), and further refinement of this
subset to include genes thatwere also up-regulated
with increasing partial pressure of CO2 (PCO2)
highlighted only 43 (0.22%) transcripts (table S3).
A CYP450 gene showed the highest fold change of
all analyzed transcripts under the high PCO2 and
low-phosphate DA-inducing condition (Fig. 1B).
This transcript was the only annotated CYP450
gene out of 20 total within the P. multiseries ge-
nome (220Mbp; Joint Genome Institute accession
no. PRJNA32659) that showed increased tran-
scription (fig. S3 and table S4). Whenmapped to
the public P. multiseries genome, this CYP450
was localized to a compact genomic island span-
ning ~8 kb that possesses three other similarly
up-regulated genes that are indicative of canon-
ical gene clustering more typically observed in
bacterial- and fungal-specialized metabolism
(Fig. 1C) (18). Genomic organization in diatoms
is not generally typified by clustering of meta-
bolic genes (19, 20). However, clusters of tran-
scriptionally coregulated genes, sensitive to Fe
and Si limitation, have been reported (21, 22).
The annotated gene functions suggest involve-
ment in terpenoid and redox biochemistry, which
are two predicted hallmarks for DA biosynthe-
sis. These gene candidates for DA biosynthetic
(Dab) enzymes were annotated as dabA (ter-
pene cyclase), dabB (hypothetical protein), dabC
[a-ketoglutarate (aKG)–dependent dioxygenase],
and dabD (CYP450) (Fig. 1C). We independently se-
quenced this gene cluster from an environmental
isolate of P. multiseries in order to validate its con-
servation (GenBank accession no. MH202990).
Despite the rarity of the pyrrolidine kainoid

skeleton in nature, the putative dab gene func-
tions enabled us to initially map our genes onto
the suggested biosynthetic pathway (14, 15). We
hypothesized that DabA catalyzes the first com-
mitted step of DA biosynthesis: N-prenylation
of L-Glu with GPP to form N-geranyl-L-glutamic
acid (L-NGG; 2). DabC and DabD would per-
form subsequent oxidative reactions (Fig. 2).
We began in vitro validation of the dab genes

with dabA, which contains a chloroplast transit
peptide sequence and an intron but low sim-
ilarity to any characterized protein in the Na-
tional Center for Biotechnology Information
(NCBI) database. Structural prediction by using
Phyre2 (23) suggested that DabAmay possess a
terpene cyclase–like fold, and phylogenetic anal-
ysis intimated an evolutionary history related to
red algal and bacterial genes (fig. S4). Among dia-
toms, dabA appears restricted to Pseudo-nitzschia
spp. We expressed recombinant His6-DabA with-
out the N-terminal transit peptide in Escherichia
coli and purified the enzyme using Ni2+ affinity
and size-exclusion chromatography (fig. S5).
In vitro, DabA catalyzes the N-geranylation of
L-Glu to form L-NGG (2) in a Mg2+-dependent
manner (Fig. 3A). DabA interrogation with struc-
turally similar substrates shows modest promis-
cuity toward prenyl pyrophosphates but high
specificity for Glu (fig. S6). Recently, L-NGG was
isolated in lowabundance from theDA-containing

red alga Chondria armata and shown through
labeling experiments in P. multiseries to be a
precursor to DA (24). These observations further
implicate dabA as a gene that encodes a major
step in DA biosynthesis.
To investigate the subsequent transformations

of L-NGG, we individually interrogated the ac-
tivity of the DabC and DabD oxygenases toward
this substrate. In the presence of Fe2+, L-ascorbic
acid, and cosubstrate aKG, recombinant DabC
purified fromE. coli cyclized L-NGG to form three
pyrrolidine ring–containingmolecules: 7′-methyl-
isodomoic acids A, B, and C, termed dainic acids
A, B, and C (5a to 5c), respectively (Fig. 3A and
figs. S7 and S8), of which 5a and 5b had been
recently isolated from C. armata (24). DabC,
however, showed minimal cyclization of other
similarly N-prenylated glutamic acids (fig. S7).

Enzymatic synthesis of the dainic acidswasmade
more amenable through a one-pot coupled assay
using L-Glu, GPP, DabA, DabC, and their requi-
site cofactors and cosubstrates (fig. S9). Despite
DabC generating much of the structural diver-
sity observedwithin the kainoidmetabolites (25),
the slow rate of L-NGG consumption and failure
to go to completion led us to suspect that this
enzymemay instead act on an oxidized substrate,
placing DabD oxidation ahead of DabC cycliza-
tion in the DA biosynthetic pathway. Incubation
of L-NGGwith Saccharomyces cerevisiaemicro-
somes that possess coexpressed transmembrane
proteinsDabD (fig. S10) andP.multiseriesCYP450
reductase (PmCPR1) generated small but repro-
ducible quantities of 7′-hydroxy-L-NGG (6) and
7′-carboxy-L-NGG (3) (Fig. 3A and fig. S11), which
was validated through comparisonwith synthetic
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Fig. 2. Domoic acid (1) biosynthetic pathway based on dab gene annotations and in vitro
enzyme activities.

Fig. 3. In vitro characterization of Dab
enzymes. (A) Relative intensities of negative
ionization–extracted ion chromatogram liquid
chromatography–mass spectrometry traces
[(282.1711, 298.1660, 312.1453, 280.1554,
310.1296) ± 0.01 mass/charge ratio] for in vitro
Dab reactions. a, DabA, L-Glu (500 mM), GPP
(500 mM), MgCl2 (10 mM); b, DabA, L-Glu
(500 mM), GPP (500 mM), without MgCl2; c, DabC,
L-NGG (2; 500 mM), FeSO4, aKG, L-ascorbic
acid; d, DabC, 7′-carboxy-L-NGG (3; 500 mM),
FeSO4, aKG, L-ascorbic acid; e, DabC, 7′-carboxy-
L-NGG (3; 500 mM), FeSO4, aKG, L-ascorbic acid,
EDTA (1.0 mM); f, DabD and PmCPR1 containing
S. cerevisiae microsomes, L-NGG (2; 500 mM),
NADPH; g, empty vector S. cerevisiae micro-
somes, L-NGG (2; 500 mM), NADPH; and
h, synthetic 7′-hydroxy-L-NGG (6) standard. Addi-
tional enzyme and cosubstrate concentrations can
be found in the supplementary materials.
Asterisks indicate that relative extracted ion
intensities for traces f and g have been 5×magnified.
(B) Comparison of in vitro DabC substrate con-
sumption of L-NGG (2; 1.0 mM) and 7′-carboxy-L-
NGG (3; 1.0 mM) and relative formation of
respective dainic acid A (5a) and isodomoic acid A
(4) products (n = 3 replicate DabC experiments).
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standards. Conversely, the dainic acid isomers
were not substrates of the DabD P450 (fig. S11).
7′-carboxy-L-NGG incubation with DabC showed
rapid cyclization to the P. multiseries natural
product isodomoic acid A (4) (Fig. 3A), which
did not occur in the presence of metal chelator
ethylenediaminetetraacetic acid (EDTA). When
comparing both DabC in vitro substrates for
physiological relevance, 7′-carboxy-L-NGG was
consumed at a much faster rate than L-NGG,
further suggesting that 7′-carboxy-L-NGG is an
on-pathway intermediate (Fig. 3B and fig. S12).
Our cumulative in vitro biochemical results imply
a DA biosynthetic pathway that begins with
the DabA-catalyzed geranylation of L-Glu to
yield L-NGG, likely in the chloroplast. DabD then
performs three successive oxidation reactions at
the 7′-methyl of L-NGG to produce 7′-carboxy-L-
NGG, which is then cyclized by DabC to generate
the naturally occurring isodomoic acid A (Fig. 2).
A putative isomerase likely converts isodomoic
acid A to DA. We biochemically interrogated the
coclustered dabB gene product but did not ob-
serve isomerase activity (fig. S13). Further exam-
ination of additionally up-regulated transcripts did
not suggest an obvious candidate gene (fig. S14).
We are actively investigating this final isomer-
ization reaction to complete the pathway to DA.
In addition toPseudo-nitzschia spp., the kainoid

structure has been observed in other diatom, red
macroalgal, and fungal compounds (fig. S15)
(12, 26, 27). In silico application of the dab genes
as a kainoid ring biosynthetic query identified
dabA and dabC homologs in several red algal
transcriptomes (28, 29), including the known
kainic acid producer Palmaria palmata (fig.
S16). Like DA, kainic acid (26) is a structurally
related glutamate agonist constructed from a
shorter terpene substratewithout the need of the
DabD P450 oxidation.
With the establishment of the DabACD-

dependent biosynthetic pathway to isodomoic
acid A in P. multiseries, we next linked this dis-
covery to themarine environment. We identified
dab genes with the same genetic organization
and high sequence identity in the genome of the
knownDA-producing Pseudo-nitzschiamultistriata
(fig. S17) (30). Moreover, of the eight publicly avail-
able Pseudo-nitzschia transcriptomes, only the

highly toxic DA-producing species Pseudo-nitzschia
australis expressed the dab genes (figs. S18 and
S19) (31). No dab homologs were found in any
other sequenced microalgal genera. By virtue
of its limited distribution, dabA thus presents
an opportunity for genetic monitoring of the
DA-producing capabilities of Pseudo-nitzschia
blooms orthogonal to currently established mass
spectrometry–based and enzyme-linked immuno-
sorbent assay–based identification approaches.
We anticipate that knowledge of the dab genes
will allow for greater understanding of the basis
and diversity ofPseudo-nitzschia toxicity, the phys-
iological function of DA, and the environmental
conditions that promote HAB formation so that
we may better anticipate risk of exposure to this
toxic marine natural product.
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