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African trypanosome strategies for conquering
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of monophyly?
Highlights
Trypanosoma brucei is a complex of
five ecotypes, namely, T. brucei f.
brucei, T. b. f. gambiense, T. b. f.
rhodesiense, T. b. f. equiperdum, and
T. b. f. evansi, which are highly evolv-
able and appear to conquer new hosts
and territories relatively easily as a result
of just a few simple mutations in their
genomes, which can be induced even
in laboratory conditions.

The subspecies status of T. brucei line-
ages is incompatible with the accumulat-
ing evidence pointing at the significant
genetic similarities, apparent polyphyly,
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Trypanosoma brucei parasites are the causative agents of African trypanosomi-
asis in humans, as well as surra, nagana, and dourine in animals. According to
current widely used nomenclature, T. brucei is a group of five (sub)species,
each causing a distinct disease and possessing unique genetic marker(s) or a
combination thereof. However, minimal nuclear genome differences, sometimes
accompanied by ongoing genetic exchange, robustly support polyphyly result-
ing from multiple independent origins of the (sub)species in nature. The ease of
generating such (sub)species in the laboratory, as well as the case of overlapping
hosts and disease symptoms, is incompatible with the current (sub)species par-
adigm, which implies a monophyletic origin. Here, we critically re-evaluate this
concept, considering recent genome sequencing and experimental studies.
We argue that ecotype should be used going forward as a significantly more
accurate and appropriate designation.
as well as overlapping hosts and disease
symptoms.

The ecotype concept fits the data accu-
mulated in the area of African trypano-
some research much better than the
subspecies nomenclature.
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Context: species and molecular data
Representingmany of themost ancient lineages, protists are hugely successful unicellular eukaryotes
contributing the majority of known extant eukaryotic diversity [1]. Most lack mineralized components,
making fossilization extremely rare, albeit that the fossil record reflects only morphology and is limited
for determining fine-grained lineage distinctions. In some instances, genome sequences can be cor-
related with geological events, allowing in part a molecular clock to be inferred. For parasites, fossils
of hosts/vectors provide valuable temporal calibration, at least for inferring the earliest possible times
of infections of plants, invertebrates, and vertebrates.

According to Mayr, ‘species are groups of actually or potentially interbreeding natural popula-
tions, which are reproductively isolated from other such groups’ [2]. Hence, species can be con-
sidered to be initiated via a speciation event and ended by either extinction or further speciation.
While 80 years later the species concept has yet to reach a complete consensus, the basic def-
inition of a separately evolving population, delimited in some manner, is, mainly for practical rea-
sons, widely accepted even in protists (for review, see [3]). Furthermore, cryptic species are
increasingly being identified by genome sequencing, indicating that overt morphological changes
do not always occur even for metazoan speciation events, let alone protists. Furthermore, the
level of genetic divergence required to provide a reproductive barrier can vary considerably, as
can population size or the rapidity by which traits can become fixed [4]. Difficulty in defining spe-
cies has been recognized for trypanosomes, with acceptance of discrete typing units for the
South American trypanosome, Trypanosoma cruzi [5]. Here, we argue that a similar revision is
in order for African trypanosomes.
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Glossary
Ecotype: a group of populations within
one species adapted to certain
environmental conditions that exhibit
behavioral, structural, or physiological
differences through variations in traits
and allele frequencies. Ecotypes occur
throughout the geographic range of a
species in similar ecological niches (e.g.,
different hosts). When similar niches
occur in widely separated places,
identical ecotypes can arise independently
and do not form monophyletic groups.
Haptoglobin-hemoglobin receptor
(HpHbR): a surface molecule mediating
heme uptake in trypanosomes.
Represents a VSG paralog.
Human African trypanosomiasis
(HAT): also called ‘sleeping sickness’, a
vector-borne disease endemic to
sub-Saharan Africa and caused by
Trypanosoma brucei f. gambiense and
T. brucei f. rhodesiense.
Kinetoplast DNA (kDNA): the
complex mitochondrial DNA of
kinetoplastid flagellates, in
trypanosomatids represented by a
dense network of interlocked circular
DNAmolecules of two types:maxicircles
carrying protein-coding genes and
minicircles encoding guide RNAs,
templates for editing maxicircle
transcripts.
Nagana/surra/dourine: vector-borne
or sexually transmitted diseases caused
by Trypanosoma brucei f. brucei, T.
brucei f. evansi, and T. brucei f.
equiperdum, respectively.
Serum resistance-associated (SRA)
protein: a variant surface glycoprotein
paralog responsible for resistance of T.
b. f. rhodesiense to trypanolytic factors
present in some host sera.
Subspecies: under the International
Code of Zoological Nomenclature, to
which protists belong, it is a taxonomic
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T. brucei is generally considered as a group of closely related (sub)species (see Glossary and
Box 1) [6,7], which, mostly for pragmatic reasons, remain frequently labeled as separate species
[8,9]. Each is associated with a distinct disease and discrete host/vector range and distinguished,
at the molecular level, by the presence/absence of a set of genes or even a single gene. Trypano-
some populations are capable of extensive hybridization both in the laboratory and in the field and
can conduct meiotic reproduction, although the major reproductive mode is asexual [7,8].
Various T. brucei (sub)species are recognized based on their host(s), the course of disease
they cause, the vectors by which they are transmitted, and, most important, mutual well-
documented genetic differences. These latter have been ascribed in many cases to specific
associations with host/vector and disease. We propose that these genetic differences are
insufficient to justify bona fide establishment of either separate species or subspecies and that
an alternative definition is more compatible with data from both the field and dozens of genomes
of T. brucei available in the databases. Moreover, we highlight an overlooked connection between
currently recognized T. brucei (sub)species in the wild and strains generated in the laboratory that
are genetically similar, if not identical, with naturally occurring forms. We argue that while prag-
matic reasons justify association of each (sub)species with a specific host and pathology, the
five T. brucei (sub)species nomenclature is untenable (see later). We believe that the ecotype
concept, as defined by the International Code of Zoological Nomenclature, best fits the available
data (Box 1). From here on, the ecotype nomenclature will be used throughout this text, unless
the reference to a (sub)species rank is explicit.

The transition to parasitism and diversification
The monoflagellated trypanosomes and related parasitic trypanosomatids are descended from a
free-living heterotrophic biflagellate bodonid-like ancestor (Figure 1) [10]. Significantly, the switch
to parasitism probably occurred on several occasions as various bodonids periodically enter the
alimentary tracts of (in)vertebrates, including tsetse flies [11], seemingly testing the barriers to
attaining parasitism. Comparative genomics and phylogenetics robustly implicate the ancestral
trypanosomatid lifestyle as involving a single host (monoxenous), and repeatedly developing
into the two-host (dixenous) mode [12]. The earliest hosts were most likely arthropods
(Figure 1), among which trypanosomatids were transmitted by numerous mechanisms, in com-
mon with their extant descendants [13]. It is reasonable to assume that the dixenous life cycle
was rapidly established following the massive radiation of vertebrates, among which parasites
were transmitted by blood-feeding arthropods. Although it most likely occurred much earlier, a
transmission via insects is documented from the mid-Cretaceous [~110 million years ago
(MYA)] fossil record by an amber-trapped Leishmania-like flagellate [14], already possessing
the lineage-defining kinetoplast DNA (kDNA) disk [15]. Moreover, within the insect vector, the
parasite is encircled by nucleated erythrocytes [16], indicating long cohabitation with vertebrates
Box 1. Characterization of an ecotype in the context of T. brucei evolution

Terms used in intraspecific taxonomy often do not have a universal, widely accepted definition and are ambiguously
applied in the literature, with the ‘ecotype’ being no exception [81]. Here, we define an ecotype as a group of organisms
within a species that is adapted to particular environmental conditions and therefore exhibit genetic and often behavioral,
structural, or physiological differences from other species members (compare with the definition of subspecies in the
Glossary). Since distinct ecotypes differ in the resources they use, they do not drive each other to extinction, whereas
selection is expected to eliminate diversity within but not between ecotypes [82]. It is important to note that the same
ecotypesmay emerge repeatedly in nature, as well as be generated experimentally. T. brucei ecotypes emerge recurrently,
which is reflected in paraphyly and polyphyly on phylogenetic trees (see later), resulting from a parallel evolution often
observed in multicellular organisms [83]. From this perspective, T. b. evansi types A and B can be viewed as independently
emerging cases of the ‘evansi’ ecotype. Phenotypic characteristics demonstrated by the representatives of a certain
T. brucei ecotype often depend on multiple host-related factors, such as host genotype, physiology, immune status,
and/or coinfections. Formally, ecotypes are recognized as forms (sometimes bioforms) and in the Latin name of the
organism, the abbreviation ‘f.’ is used (e.g., T. b. f. evansi).

rank below the species level, commonly
used to recognize morphological and/or
geographically distinct populations; the
subspecies is considered to represent
an initial stage of the species formation
and thus should be genetically distinct
and constitute a monophyletic group.
Variant surface glycoprotein (VSG):
surface molecule of African
trypanosomes covering the cell as a
dense coat. VSG switching is an
effective mechanism used for evading
the vertebrate host immune system.
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Figure 1. Putative evolutionary history of host–parasite life cycles of trypanosomes. (A) The predecessor of
trypanosomatids was a free-living bodonid. (B) Trypanosomatids initially circulated among insects. (C) Blood-feeding
insects, possibly ancestral tsetse flies, transmitted trypanosomatids into vertebrates (e.g., a dinosaur), establishing trypano-
somes, characterized by the dixenous life cycle. At that time, tsetse were globally distributed, providing unrestricted distribu-
tion to trypanosomes. (D) Tsetse and other blood-sucking invertebrates transmitted trypanosomes to all vertebrate groups
(e.g., mammals). (E) More recently, plant sap-sucking heteropteran insects transmitted trypanosomatids into plants, estab-
lishing another dixenous life cycle of phytomonads.
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and thus coevolution between dixenous trypanosomatids and their hosts. The invasion of
plants by the ancestor of Phytomonas was significantly more recent [17]. New and Old World
trypanosomes, represented by T. cruzi (subgenus Schizotrypanum) and T. brucei (subgenus
Trypanozoon), respectively, separated ~100 MYA, coincident with tectonic separation of Africa
and South America [18].

The emergence of African sleeping sickness
It is plausible that the ancestors of T. brucei infected Gondwanan fauna long before the supercon-
tinent’s fragmentation ~100MYA. Ancestral tsetse flies had a global distribution 30–40MYA [19],
and tsetse-like fossils indicate a presence in Europe 10 MYA [20]. Since the tsetse origin likely
predates the Gondwanan breakup [21], trypanosomes may have been present in the proto-
African region of Gondwana and already established their relationship. However, perhaps due
to a complex life cycle producing very low numbers of progeny and significant climatic changes,
the distribution of tsetse progressively shrunk to a belt in sub-Saharan Africa and the southern tip
of the Arabian Peninsula (Box 2). A reduced tsetse range would increase the selective advantage
of accessing additional niches, associated with penetration beyond the tsetse belt and/or
infection of a wider spectrum of hosts. While we will speculate on the specific trigger(s), it may
also have been serendipity and/or ingrained flexibility of trypanosomes that allowed diversification
into a range of life strategies.

African trypanosomes have both unique adaptations [22] and can parasitize every group of
vertebrates [23], with a capacity to quickly acquire new hosts when introduced into a novel
niche [24]. The antigenic variation system also provides an efficient mechanism for immune
evasion [25] and a response to an extracellular lifestyle within mammalian hosts. Perhaps
because of its complex life cycle that imposed multiple bottlenecks and hence accelerated
fixation of genotypes, T. brucei particularly stands out in some of these aspects. Recent interac-
tions between T. brucei and humans can be linked to historical events and thus relatively
accurately timed [26]. Weir and colleagues [27] estimated that human-infective T. brucei emerged
within the past 10 000 years, coincident with establishment of a settled agricultural population,
likely favoring human–human and human–domestic animal transmission. kDNA-based
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phylogenies indicate that strains with kDNA replication defects (see later) appeared before
5000 YA also possibly concurrent with access to domestic animals [18].

Beyond classical taxonomy
Ancestral forms of T. brucei circulated among tsetse and vertebrate African fauna for tens of
millions of years [17], a considerable period for multiple strategies and adaptations to arise.
Indeed, this occurred, but in the absence of significant morphological diversification. Humans
(genus Homo) emerged ~2.5 MYA, becoming omnipresent within the African ecosystem and
inevitably turning into a highly relevant host. Over this relatively short period, T. brucei evolved
two distinct pathologies in humans, and, based on geographic range, the causative agents
were accorded species status, with Trypanosoma rhodesiense and Trypanosoma gambiense
responsible for theWestern and Eastern human African trypanosomiasis (HAT), respectively,
complemented with T. brucei, specifically causing nagana in animals [28].
Box 2. Characteristics of T. brucei (sub)species/ecotypes

(i) T. b. f. brucei is transmitted by tsetse (genus Glossina; e.g., Glossina morsitans, Glossina pallidipes, and
Glossina fuscipes) (Figure I), and causes nagana, a relatively mild and protracted disease in many animals but frequently
more severe in non-native species [84]. T. b. f. brucei is lysed by sera from several primates, including humans, due to
the presence of apolipoprotein 1 (APOL1) complexed with lipids and other proteins forming trypanolytic factor (TLF).
TLF lyses trypanosomes following endocytosis and delivery to the lysosome [61,62,85] and effectively precludes
human infection by T. b. f. brucei – anthropocentrically a huge distinction, supporting the classical differential between
(sub)species.

(ii) T. b. f. rhodesiense causes an acute form of trypanosomiasis, a zoonotic disease infecting both humans and wild and
domestic animals in Eastern Africa [86]. It is mostly transmitted by G. fuscipes, and although wildlife was regarded as its
natural reservoir [87], T. b. f. rhodesiense can also circulate between cattle and humans [88]. Human infectivity is due to
a unique SRA protein, a VSG mutant that neutralizes TLF [89], albeit remaining capable of being lysed by some TLF
variants [61,90]. T. b. f. rhodesiense infections are geographically distinct from T. b. f. gambiense, supporting the concept
of a distinct species or subspecies (Figure I).

(iii) T. b. f. gambiense causes, in Western Africa, mild and often asymptomatic chronic disease, with apparent mainly
human–human transmission lacking a significant animal reservoir [91]. There is also rare congenital transmission [92].
Glossina palpalis is the major known vector and has very low infection rates, mirrored by laboratory studies indicating
inefficient infection. T. b. f. gambiense is resolved into two groups [58,93,94]; group 1 includes genetically homogeneous
strains meeting requirements for anthroponotic transmission, whereas group 2 is genetically heterogeneous and infects
multiple mammalian species, potentially serving as reservoirs for human infection [95,96]. TLF-mediated lysis is avoided
via haptoglobin-hemoglobin receptor (HpHbR) mutations decreasing ligand affinity [68,97]. Additional mechanisms
for lower T. b. f. gambiense pathogenicity have been proposed [69,70]. A truncated VSG, namely, TgsGP, is specific to
T. b. f. gambiense group 1 [53,98], but no equivalent marker is available for group 2 [58]. However, the very distinct course
of disease has been sufficient for at least subspecies designation, despite an otherwise near genetic identity between T. b. f.
brucei, T. b. f. gambiense, and T. b. f. rhodesiense.

(iv) T. b. f. equiperdum is sexually transmitted between equids. Significantly, tsetse-mediated transmission is replaced by
blood exchange during coitus, albeit mechanic transmission via blood-feeding flies cannot be excluded [99]. Such a direct
mammal–mammal route eliminated sexual reproduction (which takes place in tsetse) and released all constraints for
retention of kDNA [6,78], leading to progressive loss, although the kDNA minicircle component is retained [41].

(v) T. b. f. evansi infects horses, cattle, goats, buffalos, dogs, camels, and wild game. It is transmitted through the bite of
stable, horn, and tabanid flies or occasionally vampire bats or by ingestion of raw meat [47]. Mechanical transmission
allowed the parasite to use various vectors and migrate out of Africa. Driving forces for emergence seem to be similar to
T. b. f. equiperdum, but the trajectory toward kDNA loss has been either faster or more thorough, leading to complete lack
of kDNA maxicircles and in most cases minicircles [6]. Both T. b. f. evansi and T. b. f. equiperdum are monomorphic, with
the mitochondrial import of tRNAs [100] and the protein machinery for kDNA replication and maintenance intact and fully
functional [32]. Furthermore, they both carry mutations in the nucleus-encoded γ-subunit of the F1FO-ATPase, which fully
compensates for the loss of otherwise essential kDNA [60,101].
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Figure I. Life cycles and geographic distribution of Trypanosoma brucei subspecies/ecotypes. A simplified
scheme depicting the transmission of T. b. f. brucei, T. b. f. gambiense, and T. b. f. rhodesiense via tsetse flies to
humans and other mammals (outer circle) and the mechanical transmission of T. b. f. equiperdum and T. b. f. evansi via
horseflies to camels and other mammals. The arrow indicates direct sexual transmission.
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The distinct character of animal trypanosomes was noticed early because flagellates parasitizing
wildlife are potently lysed in human blood [29]. However, in the absence of significant morpholog-
ical differences and with nuclear genomic data revealing extremely limited differences, they were
reclassified to the currently accepted subspecies rank (T. brucei, T. brucei gambiense, and
T. brucei rhodesiense) [30]. Indeed, although these subspecies differ in the distinct adaptation
mechanisms tailored to their hosts, for which the molecular details are partially known, there is
no evidence for the erection of genetic exchange barriers [7].

This picture is further complicated by T. brucei f. evansi and T. b. f. equiperdum, which were for
more than one century considered as separate species (Trypanosoma evansi and Trypanosoma
equiperdum) causing two distinct lethal pathologies, mainly in ungulates and known as surra and
dourine, respectively [28]. A curious parallel was drawn between leukemia in mammals and T. b. f.
evansi and T. b. f. equiperdum, where the loss of capacity to produce the stumpy form is
associated with uncontrolled proliferation [31]. In the absence of clear differences from T. b. f.
brucei in their nuclear genome [32], deletions or complete loss of mitochondrial DNA (= kDNA)
renders T. b. f. evansi and T. b. f. equiperdum as petite mutants [6]. Why, when, and how this
host specialization developed is unclear. Possible reasons are discussed in Box 2.

Limits to the concept of five T. brucei (sub)species
The concept of each T. brucei (sub)species being responsible for a specific disease is both logical
and vital for clinicians and veterinarians for appropriate diagnosis and treatment. However,
expanding sequence data and increased understanding of molecular processes repeatedly
evolved to avoid lysis and survive kDNA deletion are incompatible with the concept of five
separate monophyletic (sub)species and, ultimately, restrictive. Moreover, ‘gray zone’ cases,
such as combinations of characteristics discussed earlier, can break (sub)species boundaries
(Box 2). Similarly, occasional difficulties in labeling disease as gambiense/rhodesiense HAT, or
surra/dourine in animals, extend this challenge to the clinic. Veterinarians have treated the latter
728 Trends in Parasitology, September 2022, Vol. 38, No. 9
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two diseases strictly separately, yet this decision is increasingly being questioned [33]. As both
T. b. f. evansi and T. b. f. equiperdum constitute petitemutants of T. brucei [6], it is highly unlikely
that they cause truly distinct diseases but rather constitute a single ailment with a symptom spec-
trum depending on factors such as host species, immune status, genotype, general health, and
route of infection. The critical differences between (sub)species have been selected via reduced
availability of tsetse vectors, decreasing transmission frequency, and emergence of new hosts.
Importantly, none of these (sub)species constitutes a monophyletic branch but rather radiates
from a genetically diverse T. b. brucei population (see later and Figure 2).

T. b. f. rhodensiense is distinguished by the presence of the serum resistance-associated
(SRA) gene, yet the gene seems to be occasionally exchanged between T. b. f. rhodesiense
and T. b. f. brucei [34], especially in East Africa [35]. Genes similar to T. b. f. gambiense-specific
glycoprotein (TgsGP) were identified in some strains of T. b. f. brucei and T. b. f. rhodesiense [36].
Furthermore, allegedly T. b. f. evansi-specific variant surface glycoproteins (VSGs) [37,38]
TrendsTrends inin ParasitologyParasitology

Figure 2. Trypanosoma brucei subspecies/ecotypes are not monophyletic. A schematic cladogramdemonstrating
multiple cases of emergence of T. brucei f. brucei (dark gray triangles), T. b. f. evansi (brown), T. b. f. equiperdum (green),
T. b. f. rhodesiense (blue), and T. b. f. gambiense (magenta) from a genetic pool of T. brucei. The topology is based on
published phylogenetic and clustering analyses [33,39,52]. Genetic markers traditionally used to distinguish trypanosome
subspecies/ecotypes are shown with black-colored symbols. The tree rooting is arbitrary. Abbreviations: kDNA,
kinetoplast DNA; SRA, serum resistance-associated protein; TbHpHb receptor, haptoglobin-hemoglobin receptor;
TgsGP, T. b. f. gambiense-specific glycoprotein.
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have recently been identified in several strains of T. b. f. brucei and T. b. f. gambiense group 2 [39].
Hence, ambiguous distinctions between T. b. f. brucei, T. b. f. gambiense, and T. b. f. rhodensiense
are tenuous at best and depend essentially on the evolution of VSGs. Both SRA and TgsGP proteins
are derived from VSGs, as are several other surface proteins, including the invariant surface
glycoproteins and the transferrin receptor (Box 3). We propose that stability of the VSG-fold in the
face of primary structure evolution has provided considerable evolutionary flexibility to these
parasites, including the capacity to evolve receptors and resistance mechanisms. The rather
impressive efficiency of this mechanism is exemplified by recent identification, through selective
in vitro culturing, of a VSG variant (VSGsur) that is capable of providing resistance to the trypanocide
suramin [40]. VSGsur possesses a number of unusual features, including a β-sheet domain, but is
part of a VSG subfamily, indicating the ready presence of this diverse structure [40].

T. b. f. equiperdum and T. b. f. evansi can obviously be segregated based on specific kDNA
features [41] (Box 2), but this is also problematic [42]. Currently, T. b. f. equiperdum is differenti-
ated from T. b. f. evansi based on retention of kDNA maxicircles [43]. However, elimination of the
procyclic stage from the life cycles of both T. b. f. equiperdum and T. b. f. evansi permitted
gradual kDNA loss, initially with deletions in the maxicircle followed by losses of sequence hetero-
geneity of kDNA minicircles, terminating with gradual elimination and eventual complete loss
Box 3. A flexible protein framework for evolvability

The VSG-fold (pfam PF00913 and PF13206) is essentially a small bundle of α-helices with intervening loops prominently
displayed at the face of the molecule exposed to the environment (Figure I). Variability in these loops is a major contributor
to antigenic differences between VSGs [102]. The flexibility of the fold has been known for a considerable time due to struc-
tural studies indicating that very similar folds are maintained even between VSGs with low sequence identity [103]. More
recently, as additional structures have emerged, the full utility of the VSG-fold has become apparent and is shared between
several receptors, the SRA protein and others, based on structural predictions. Moreover, quaternary structure is variable
as VSGs occur as dimers and trimers, depending on the variant. We suggest that the VSG-fold likely emerged from an
invariant surface protein, possibly an ancestral invariant surface glycoprotein or receptor, and that has come to be adopted
for many distinct functions. The stability of the VSG-fold in the face of sequence variance is likely a selective advantage
powering evolvability and, in the presence of a large VSG gene repertoire as in extant African trypanosomes, provides a
driver for potential very rapid adaptation.

TrendsTrends inin ParasitologyParasitology

Figure I. Structural predictions for various VSG-related surface glycoproteins. Experimental structure data were
obtained from the Protein Data Bank (https://www.rcsb.org), and modeled structures used Rosetta with default setting
and the first model taken in each instance (https://robetta.bakerlab.org). All structures were rendered using ChimeraX
(https://www.cgl.ucsf.edu/chimerax) and rainbow colored from the N to C termini as indicated. All structures are shown
at similar resolution. The extended C-terminal α-helix of ISG75 folded back on itself is likely an artifact.
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Figure 3. Distinguishing features in the kinetoplast DNA (kDNA) of Trypanosoma brucei subspecies/ecotypes.
(A) The disk-shaped kDNA network of T. brucei f. brucei. Note the complete maxicircle and high number and sequence
diversity of orderly catenated minicircles. (B) The irregular kDNA network of T. b. f. equiperdum. Note the truncated
maxicircle and decreased number and diversity of disorderly catenated minicircles. (C) The highly reduced or eliminated
kDNA of T. b. f. evansi. Note the absence of maxicircles and the near homogeneity of minicircles, which are completely
lost in some strains.
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(Figure 3). This suggests that T. b. f. equiperdum and T. b. f. evansi represent snapshots in the
process of loss of the kDNA rather than distinct endpoints.

Experimental generation of T. brucei (sub)species/ecotypes
Dyskinetoplastic (partial kDNA loss) or akinetoplastic forms (total kDNA loss) of T. b. f. brucei can
be chemically induced in the laboratory [44]. At the time of these studies, it was unknown that
these cell lines are analogous to naturally occurring T. b. f. equiperdum or T. b. f. evansi. More
recently, a similar phenotype has been achieved by inactivating genes involved in kDNA
replication. Indeed, ablating topoisomerase II generates akinetoplastic trypanosomes [45],
essentially identical to T. b. f. evansi. Inhibition of another kDNA replication machinery compo-
nent, PIF2-type helicase, leads to selective elimination of kDNA maxicircles [46], generating
essentially T. b. f. equiperdum. Again, at the time, the virtual identity among nuclear genomes
of T. b. f. equiperdum, T. b. f. evansi, and T. b. f. brucei remained to be discovered [32,39,47],
but it is now clear that if a single specific protein out of ~8700 in T. b. f. brucei [48] is disrupted,
T. b. f. equiperdum or T. b. f. evansi come into existence. Finally, the dys- and akinetoplastic
forms occur as a result of drug pressure with standard trypanocides [49], and the generation of
dyskinetoplastic flagellates also represents a resistance mechanism [50].

Hence, if a critical gene is lost or rearranged in a wild strain of T. b. f. brucei that lowers overall
fitness, the progeny is under strong selection for an altered life cycle, host range, pathogenicity,
and/or geographic distribution, as compared with the original strain. Consequently, extending
this argument to HAT disease-causing (sub)species, as even T. b. f. evansi can infect humans
[51], is highly reasonable. Indeed, one parasite causing one disease (easily) becomes another
parasite causing another disease.

The end of monophyly
In regions of high human density and decreasing wild animal populations, infecting humans is a
clear advantage to T. b. f. brucei, and, since neither T. b. f. gambiense nor T. b. f. rhodesiense
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is monophyletic (Figure 2), this suggests multiple ingress events [39,52]. There are just a few
routes by which T. b. f. brucei can succeed in this transition. Moreover, sequence data support
the existence of hybrids between ecotypes [53–55]. T. b. f. rhodesiense polyphyly was explained
as a consequence of recombination between T. b. f. brucei and T. b. f. rhodesiense [34], which
frequently intermingle in phylogenetic reconstructions (Figure 2), and these minimal genetic differ-
ences increase the possibility of SRA gene exchange [56]. Consequently, it is difficult to resolve
exact phylogenetic relationships between these ecotypes even with whole-genome sequencing
[39,52], and hence it is highly likely that T. b. f. rhodesiense emerged multiple times from T. b. f.
brucei [35,56,57], with both ecotypes likely originating in East Africa, where they are most hetero-
geneous [39,52]. Moreover, T. b. f. gambiense group 2, a genetically heterogeneous assemblage
originating fromWest and Central Africa and not closely affiliated with T. b. f. gambiense group 1,
is also polyphyletic (Figure 2), with no available specific genetic markers [58].

The strongly supported polyphyly of T. b. f. evansi and T. b. f. equiperdum provides additional
evidence for highly complex relationships. Numerous studies based on just a handful of genes
or whole genomes predict multiple independent origins of T. b. f. evansi and T. b. f. equiperdum,
with a minimum of four instances [32,33,39,59]. Moreover, complete loss of kDNA is elegantly
compensated for by a single amino acid change in the F1FO-ATPase γ-subunit [60], and identifi-
cation of several different mutations is in agreement with the lack of monophyly of the dys- and
akinetoplastic trypanosomes. Genome-based analyses point to East Africa as the region from
which these ecotypes originate [32,39,59].

Clear and speculative trade-offs
We propose that the antecedent T. brucei was exceptionally flexible, allowing descendants to
assimilate new hosts. These events occurred repeatedly with a restricted set of outcomes and
all arising from simple genetic changes representing trade-offs, the most striking of which is the
arms race between T. b. f. brucei and primate apolipoprotein 1 (APOL1) (Figure 4) [61–63].
Specific APOL1 variants can prevent interaction with SRA and are more common among
Africans than among the general population [64,65], but they are also associated with early-
onset renal disease [66], schizophrenia, stroke, cancer, and other diseases, explaining the failure
of such alleles to sweep the population [67]. This Red Queen race is a textbook example of
dynamic host–parasite relationships. Such a mechanism is less clear for T. b. f. gambiense,
which has significantly lower pathogenicity than T. b. f. rhodesiense. Several explanations have
been offered, including mutations within the HpHb receptor leading to decreased trypanolytic
factor (TLF) accumulation [68,69]. T. b. f. gambiense also has abrogated heme import [70],
representing another possible candidate behind attenuated pathogenicity.

With this dexterity inmind, we propose another scenario, albeit speculative. Due to low parasitemia
inmammalian blood, short life, and the low probability of being taken up by tsetse, the stumpy form
represents a bottleneck for transmission.When, for eons, high numbers of tsetsewere around, this
state was tolerable, but now the parasite likely faces a decreasing distribution and density of its
insect vector. Hence, trypanosomes may attempt to overcome this limitation, as reflected by the
so-called transmission paradox, in which they keep circulating even when the parasitemia level is
extremely low [71]. While the presence of flagellates in human skin may be a solution to this
problem [72], what if the transmission capacity of slender bloodstream stage [73] has been
relatively newly acquired in order to compensate for the unsustainable transmission via the stumpy
form, although the latter remains more efficient in infecting flies [74]? Alternatively, reduced stumpy
formation might favor higher parasitemias, thus promoting transmission. After all, the related
Trypanosoma congolense and Trypanosoma vivax do not use the stumpy form in their life cycle
[75,76]. The latter species not only lacks a form morphologically resembling stumpy bloodstream
732 Trends in Parasitology, September 2022, Vol. 38, No. 9
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Figure 4. Distinguishing features within the endocytic pathway of Trypanosoma brucei subspecies/ecotypes.
Schematic drawing of the trypanosome cell, depicting the endocytic pathway for trypanolytic factor (TLF). The endocytosis of
the TLF–apolipoprotein 1 (APOL1) complex via the haptoglobin-hemoglobin receptor (HpHbR) results in expansion and
eventual rupture of the lysosome, leading to cell death of T. brucei f. brucei. The mechanism of resistance of T. b. f.
gambiense (group 1) is based on (partial) prevention of internalization of TLF–ApoL1 via mutated HpHbR. TLF–APOL1 is
also prevented from being taken into the cell by T. b. f. gambiense-specific glycoprotein (TgsGP), but the mechanism
remains unclear. In T. b. f. rhodesiense, delivery of APOL1 to the lysosome is prevented by the activity of the serum
resistance-associated (SRA) protein. The likely locations of inhibitory steps are indicated in red.
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T. brucei but also lacks identifiable homologs of protein associated with differentiation, the molec-
ular marker of the stumpy form. However, it remains to be elucidated whether trypanosomes out-
side the T. brucei clade are able to differentiate into stages, which are functionally analogous to the
stumpy form and yet are morphologically and physiologically different [76].

When camelids and other large African mammals moved to northern desertification areas,
trypanosome infections would terminate with their death unless a tsetse-independent transmis-
sion to another host was available [41]. This exercised huge pressure to sustain transmission in
the absence of a vector, which becomes possible in the presence of compensatory nuclear
mutations enabling kDNA loss [60,77]. The latter is facilitated by lack of requirement for kDNA
in the bloodstream stage [78], allowing T. brucei to leave Africa and spread around the world
[79], although at the same time losing the capacity for genetic exchange that occurs only in the
tsetse salivary glands [80]. Since asexuality reduces the efficacy by which selection acts, the
differences among T. b. f. equiperdum and T. b. f. evansimay therefore be caused by differences
in time since loss of meiosis. Their switch to monomorphism is potentially associated with loss of
growth control in the absence of stumpy forms, leading to an increased parasitemia to improve
the likelihood of transmission. In the long run, loss of meiosis comes with a cost as it appears
that the dys- and akinetoplastic trypanosomes are slowly but steadily being replaced by newly
emerging strains, although this hypothesis has yet to be tested.
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Outstanding questions
What is the frequency for emergence
of ecotypes within the ancestral pool?

How long can asexual strains sustain
their transmission between vertebrate
hosts without genetic recombination?

What is the extent of undersampling of
natural diversity of T. brucei?

Is the lower pathogenicity of T. b. f.
gambiense influenced by abrogated
heme import?

Is the poor transmissibility of T. b. f.
gambiense the result of inefficient
differentiation into the stumpy form?

What are the molecular determinants
of human serum resistance of the
T. b. f. gambiense group 2?

Trends in Parasitology
Concluding remarks
Available evidence convincingly argues that a (sub)species designation does not suit
T. brucei. We propose that ecotypes provide a more accurate grouping (e.g., T. brucei
form gambiense) and can be used equally well for strains isolated from nature (e.g., T. b. f.
brucei) or generated in laboratorio (e.g., T. b. f. evansi). While there is evidence for emergence
in nature of various ecotypes from the ancestral pool, it remains unclear how often this
happens and how stable these ecotypes are, especially when they become asexual, as is
the case of T. b. f. evansi and T. b. f. equiperdum. Based on recent data, it is plausible to
consider that the pathogenicity of T. b. f. gambiense becomes decreased due to abrogated
heme import with downstream lack of heme-carrying proteins. This would extend viability of
its hosts, which may be necessary in light of its poor transmissibility via tsetse. Our attempt
for a more holistic view on African trypanosomes may help propel understanding of the origins
of parasitism and host range as more aspects of the biology of T. brucei continue to be
uncovered (see Outstanding questions).
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